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• Container rearrangement
(robot = container)

• Heavy traffic
(robot = automobile (in a jam))

• Data transfer
(robot = data packet)

• Generalized lifts
(robot = lift) 

Motivation (1)



Pavel Surynek, 2010

Motivation (2)

(Lucasfilm Ltd., 1999-2009)

• Computer generated imagery (mass scenes)

• Computer games (unit navigation in
real-time strategies)
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Path planning for multiple robots (1)
Ryan, 2007; Surynek, 2009

• Formal description of an instance of the problem of 
path planning for multiple robots:
▫ The environment is modeled as an undirected graph, 

where vertices represent locations and edges represent 
possibility of traversal between locations.

▫ The instance is a quadruple Σ = (G, R, SR
0, SR

+), where:
 G=(V,E) is an undirected graph,
 R = {r1,r2,...,rν}, where ν<|V| is a set of robots,
 SR

0: R V is a uniquely invertible function representing initial 
arrangement of robots in vertices of the graph, and

 SR
+: R V is a uniquely prostá funkce representing the goal 

arrangement of robots in vertices of the graph.

• The time is discrete. Time steps and their ordering is 
isomorphic to the structure of natural numbers.
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Path planning for multiple robots(2)
Ryan, 2007; Surynek, 2009

• The dynamicity of the task is as follows:
▫ A robot occupying a vertex at the time step t can move into 

the neighboring vertex (the robot will occupy the target 
vertex at time step t+1) if this movement is allowed and no 
other robot is trying to enter the same target vertex.

▫ A movement commenced at the time step t and finished at 
the time step t+1 is allowed, if and only if:
 the target vertex of the movement is unoccupied at the time 

step t, or
 the target vertex is being left by another robot at time step t

by the allowed movement.
• Given Σ = (G, R, SR

0, SR
+), the task is to find:

▫ A sequence of movements scheduled over time for each 
robot such that each robot reach its goal vertex and the 
condition on dynamicity is always preserved.
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An example instance and remarks

• Properties implied by the dynamicity condition:
▫ forbids collisions among robots
▫ allows high parallelism

• Compare with pebble motion on a graph:
▫ The movement is allowed into the currently

unoccupied vertex only.
▫ Lloyd’s 9, 15, (n2-1)-puzzle
 The parallelism is substantially lower.
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solution length=5

Time step: 1 2 3 4 5

A solution of an instance of multi-robot 

path planning, where R={1,2,3}

6 | CSPSAT 2010, Kobe, Japan



Known results (1)

• Originally obtained for pebble motion on a graph
• The case with bi-connected graph is especially interesting – the 

instance is almost always solvable – we will restrict on this case:
▫ Suppose there is a single unoccupied vertex (the most difficult case)
▫ Rearrangement of robots in vertices of the graph can be regarded as a 

permutation (the unoccupied vertex is fixed within SR
0 a v SR

+).
▫ Permutation can be either even or odd (can be expressed using the 

even or odd number of transpositions of pair of robots respectively).
• Wilson, 1974:

▫ If a bi-connected graph (not isomorphic to a cycle) with a single unoccupied 
vertex contains cycle of the odd length, then every instance of path planning 
for multiple robots over this graph is solvable.

▫ If a bi-connected graph (not isomorphic to a cycle) with a single unoccupied 
vertex does not contain cycle of the odd length, then an instance of path 
planning for multiple robots over this graph is solvable, if and only if SR

+

represents an even permutation with respect to SR
0.

▫ Solution of the length of O(|V|5) can be generated in the worst case time of O(|V|5).
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Known results (2)
• Kornhauser, Miller, Spirakis, 1984 (MIT algorithm):

▫ Again designed for bi-connected graphs with single unoccupied vertex.
▫ Solution of the length of O(|V|3) can be generated in the worst case time of 

O(|V|3).
▫ There exist instances, where the length of shortest possible solution is Ω(|V|3).

• Ratner, Warmuth, 1986:
▫ The decision variant of the problem of pebble motion on a graph when the 

shortest possible solution required, is an NP-complete problem.
 movements are into unoccupied vertices only – low parallelism

▫ Shown for the generalized Lloyd’s 15 on the board of the size of N x N
• New results for multi-robot path planning on bi-connected graphs:

▫ Generating solution of the length of O(|V|3) can be done in the worst case time 
of O(|V|3) with lower constants in the asymptotic estimation than MIT.
 at least two unoccupied vertices are required
 single unoccupied: solution length O(|V|4) in the time of O(|V|4), however practically 

still better than MIT
▫ The decision variant of the problem of multi-robot path planning, when a 

shortest possible solution is required, is an NP-complete problem.
 movements can be done into currently unoccupied vertices – higher parallelism
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The MIT Algorithm – main idea (1)
Kornhauser, Miller, Spirakis, 1984 

• The set of possible rearrangements of pebbles over the graph 
forms a permutation group 𝒢 with elements P={p1,p2,...,pμ}
▫ Definition: Permutation group 𝒢 for elements P={p1,p2,...,pμ} is

k-transitive for k≤μ, if for every pair of k-tuples of elements a1,a2,...,ak and 
b1,b2,...,bk , where aiP, biP for i=1,2,…,k there exists a permutation 𝒢, 
such that (ai)=bi for i=1,2,…,k.

• Proposition: If a permutation group 𝒢 contains a cycle of the 
length k and it is k-transitive, then it contains all the cycles of the 
length k.

• Proposition: Every even permutation of elements P={p1,p2,...,pμ} 
can be obtained as a composition of at most μ-2 cycles of the 
length 3 (3-cycle).

• We will show a sketch of the proof that a bi-connected graph not 
isomorphic to a cycle induces 3-cycle and it is 3-transitive:
▫ This is sufficient to create every even permutation.
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The MIT Algorithm – main idea (2)
Kornhauser, Miller, Spirakis, 1984 

Pavel Surynek, 2010

• Definition: Graph G=(V,E) is bi-connected, if |V|≥3 and vV
G=(V-{v},E’), where E’={{x,y}E | x,y ≠ v}, is connected.

• Proposition: Every bi-connected graph can be constructed from
a cycle by adding handles.

p1
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p7

A B

Cycle + 1 handle
• Illustration of a 3-cycle: ABA-1B-1=(p4,p7,p3)

• Illustration of 3-transitivity:

• Every 3 pebbles (x,y,z) can be arranged into 
a handle of the length at least 3 … 
permutation P

• Similarly for pebbles (u,v,w)…permutation Q

• PQ-1 gives 3-transitivity (x,y,z) on (u,v,w)

initial cycle

1st handle

2nd handle

3rd handle
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The MIT Algorithm – remarks
• The simplest case has been illustrated only:

▫ Case analysis for various situations (length of handles, special sub-graphs)
▫ Main idea is the same as in the illustrated example.

• The length of the solution and worst case time complexity:
▫ Generating 3-cycle
 the constant number of rotations of handles
 a rotation of the handle consumes O(|V|) movements, can be determined in the 

worst case time of O(|V|)
 O(|V|) movements and time is required in total

▫ Generating 3-transitivity
 3 relocations of pebbles to a handle, 3 rotations of the handle
 relocation of a pebble along an edge consumes O(|V|) movements
 a pebble move along at most |V| edges
 O(|V|2) movements and time is required in total

▫ We need to compose μ-2 3-cycles in total, where each 3-cycle consumes 
O(|V|2) movements and time. O(|V|3) movements and time is required in total.

• Drawback: relatively high constants in asymptotic estimations
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The BIBOX Algorithm – main idea (1)
Surynek, 2009
• Suppose that we have a decomposition of a bi-connected graph

G=(V,E) into handles H1,H2,…,Hl and an initial cycle C0.
• Further suppose that a sequence of handles is associated with a 

sequence of cycles C1,C2,…,Cl - can be obtained by connecting 
endpoints of a handle.

• Relocation primitives:
▫ We are able to: „relocate“ an unoccupied

vertex to any location in G.
▫ We are able to: relocate any robot

into any vertex (bi-connectivity is
exploited)
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The BIBOX Algorithm – main idea(2)
Surynek, 2009

• More complex relocations of robots are possible using 
mentioned relocation primitives:
▫ Stacking robots into handle in

the right ordering.

• Stacking robots:
▫ Take the last handle.
 Relocate robot into

the grey vertex.
 Perform rotation of the handle

(using the green unoccupied vertex).
 ...
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The BIBOX Algorithm – remarks

• Stacking robots into handles has been illustrated
▫ Does not work for the initial cycle and the first handle
 Special approach must be used
 The second unoccupied vertex is used to exchange pairs of robots
 Every permutation of robots can be achiever using robot exchanges

• The length of the solution and worst case time complexity:
▫ Placing a single robot into the handle requires:
 O(|V|) rotations of a handle, where each rotation consumes O(|V|) 

move
 relocation of a robot along a path of the length O(|V|), where 

transition along an edge consumes O(|V|) movements
 O(|V|3) movements in total
 worst case time is O(|V|3) as well

▫ The same asymptotic estimation as in the case of MIT
 however, constants in the estimations are better in the case BIBOX
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NP-completeness of multi-robot path planning (1)
Surynek, 2010

• The decision version of the optimization variant of the problem 
of path planning for multiple robots:

▫ For a given instance Σ = (G=(V,E), R, SR
0, SR

+) and a number η, we 
need to answer whether there exists a solution of Σ which 
makespan is at most η.

 Makespan is typically lower than the total number of movements within 
the solution ← parallelism.

• Lemma: The problem is in the NP class as we can construct
solution of the size of O(|V|3) (for example by the BIBOX
algorithm).
▫ The size of the oracle/certificate we need to guess in the non-

deterministic model is at most O(|V|3), thus polynomially bounded.

▫ Remark: this is not always known even for similar tasks (such as Sokoban)
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NP-completeness of multi-robot path planning (2) 
Surynek, 2010

• Lemma: The decision version of the optimization variant of 
multi-robot path planning is an NP-hard problem.
▫ Using a reduction of Boolean satisfiaility to multi-robot path planning
 extremely complicated
 main ideas will be shown only

• Let F be a Boolean formula in CNF
▫ Formula = conjunction of clauses
▫ Clause = disjunction of literals
▫ Literal = Boolean variable or a negation of a Boolean variable

• An instance of multi-robot path planning problem Σ = (G=(V,E), R, SR
0, 

SR
+) will be constructed.

• Some vertices of the graph G will be associated with literals of the 
formula F.

• The valuation of variables e of F will be defined as follows:
▫ If a vertex corresponding to a literal does not contain a robot at the 

given time step, then the literal is assigned the value TRUE.
▫ Otherwise the literal is assigned the value FALSE.
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NP-completeness of multi-robot path planning (3) 
Surynek, 2010

• Additional vertices and edges in G serve to enforce the following 
constraints:
▫ Boolean consistency
 literals corresponding to the same Boolean variable should be consistently

evaluated using  the valuation e

▫ Clause satisfaction
 all the clauses should be satisfied by the valuation e

• Boolean consistency and clause satisfaction constraints together with 
some other techniques ensures the following:
▫ The formula F is satisfiable if and only if there exists a solution of Σ of the 

makespan at most η.

• The following techniques are used to ensure above constraints:
▫ Vertex locking
 a robot cannot enter certain vertex at given time step

▫ Conjugation of robots
 a group of robots must be still together
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The technique of vertex locking
▫ An instance with the optimal

makespan of 3

▫ Vertex v3 will be locked for time 
steps 2 and 4 in all the optimal 
solutions

 can be extended to multiple locked 
vertices

 it is possible to lock sets of vertices
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The technique of conjugation of robots
• A group of 4 agents must move together in all the optimal 

solutions – vertex locking is exploited
▫ The conjugated group of robots move either through the left or 

through the right branch

▫ Serves for simulation of Boolean consistency

…

s1 s2 s3 s4

l r

Left branch Right branch
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Experimental evaluation (1)

• Comparison of algorithms MIT and BIBOX – makespan
▫ Tested on random graphs with random arrangements of robots.
 Graphs containing up to 30 vertices
 Generated by adding handles of random length

• Algorithm BIBOX produces order of magnitude shorter 
solutions than MIT.
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Experimental evaluation (2)

• Comparison of algorithms MIT and BIBOX - runtime
▫ The same set of testing instances as in the previous test

▫ Algorithm BIBOX proved to be slightly faster than MIT.

Pavel Surynek, 2010

0,00

0,04

0,08

0,12

13 14 14 15 17 18 19 19 19 20 21 22 23 24 24 26 27 29 29 30 30 31

RuntimeBIBOX

MIT

|V|

21 | CSPSAT 2010, Kobe, Japan



Experimental evaluation (3)

• Tests of the BIBOX 
algorithm on large 
instances

▫ Random instances with 
up to 400 vertices

▫ Varying number of 
unoccupied vertices
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Conclusions

• The existent algorithm MIT for pebble motion on a graph has 
been described – exploits 3-transitivity and 3-cycles
▫ bi-connected graphs, single unoccupied vertex

• New algorithm BIBOX for multi-robot path planning – uses 
direct placement of robots into verteces of handles of the 
handle decomposition
▫ bi-connected graphs, two unoccupied vertices (can be 

augmented to single unoccupied) 
▫ Experiments shown that BIBOX produces better solutions than MIT
▫ Runtime of BIBOX is slightly lower than that of MIT

• NP-completeness of the optimization variant of the problem of 
multi-robot path planning
▫ Reduction of Boolean satisfiability to multi-robot path planning
▫ Various techniques for enforcing correspondence between both 

instances have been shown
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Demo
GraphRec Software (by Petr Koupý) for visualizing solutions
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