
Introduction Scarab Constraint Model Advanced Solving

Scarab: A Prototyping Tool for SAT-based
Constraint Programming Systems

Takehide Soh1, Naoyuki Tamura1, Mutsunori Banbara1,
Daniel Le Berre2 and Stéphanie Roussel2

1) Kobe University
2) CRIL-CNRS, UMR 8188

Joint Seminar on Theory, Implementation, and Applications of
Logic and Inference

(July 25th, 2013 at Hokkaido University)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Introduction Contents

Introduction

Modern fast SAT solvers have promoted the development of
SAT-based systems for various problems.

For an intended problem, we usually need to develop a
dedicated program that encodes it into SAT.

It sometimes bothers focusing on problem modeling which
plays an important role in the system development process.

In this talk

We introduce the Scarab system, which is a prototyping tool
for developing SAT-based systems.

Its features are also introduced through examples of
Graph Coloring and Pandiagonal Latin Square.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Introduction Contents

Invited Talk by Prof. Stuckey, SAT 2013

SAT technology ... it can solve
CNF problems of immense size.

But solving CNF problems
ignores one important fact:
there are NO problems that
are originally CNF.

Modeling is important

Problem
Modeling−−−−−→ Conceptual Model

Encoding−−−−−→ Design Model

Conceptual Model: A formal mathematical statement

Design Model: In the form that can be handled by a solver

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Introduction Contents

Contents of Talk

1 Getting Started: Overview of Scarab

2 Designing Constraint Models in Scarab

3 Advanced Solving Techniques using Sat4j

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Introduction Contents

Contents of Talk

1 Getting Started: Overview of Scarab ⇐=

2 Designing Constraint Models in Scarab

3 Advanced Solving Techniques using Sat4j

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.

It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Sat4j

Scarab

DSL
SAT Solver

API

Encoder

Decoder

CSP Solver

API

Implemented by 500 lines of Scala

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

Scarab
DSL

SAT Solver
API

Encoder

Decoder

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver
API

Encoder

Decoder

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver
API

Encoder

Decoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver
API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver
API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.

The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Architecture and Features

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver
API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Example of Scarab Program: GCP.scala

Graph coloring problem (GCP)
is a problem of finding a coloring
of the nodes such that colors of
adjacent nodes are different.

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Imports

import jp.kobe_u.scarab.csp._

import jp.kobe_u.scarab.solver._

import jp.kobe_u.scarab.sapp._

First 2 lines import classes of CSP and CSP solver.

Third line imports the default CSP, Encoder, SAT Solver, and
CSP Solver objects.

It also imports DSL methods provided by Scarab.

int(x, lb, ub) method defines an integer variable.
add(c) method defines a constraint.
find method searches a solution.
solution method returns the solution.
etc.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Contents of Talk

1 Getting Started: Overview of Scarab

2 Designing Constraint Models in Scarab

3 Advanced Solving Techniques using Sat4j

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Overview Example

Contents of Talk

1 Getting Started: Overview of Scarab

2 Designing Constraint Models in Scarab ⇐=

3 Advanced Solving Techniques using Sat4j

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving PLS(n)

Pandiagonal Latin Square: PLS(n)

Place different n numbers into n × n matrix
such that each number appears exactly once
for each row, column, diagonally down right,
and diagonally up right.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

We can write five SAT-based PLS Solvers within 35 lines.

Name Modeling Encoding Lines

AD1 alldiff naive 17
AD2 with Perm. & P. H. Const. 31

BC1 Boolean Pairwise 22
BC2 Cardinality Totalizer [Bailleux ‘03] 35
BC3 Seq. Counter [Sinz ‘05] 27

Let’s have a look their performance. Note that, in CSP Solver
Comp. 2009, NO CSP solver (except Sugar) could solve n > 8.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving PLS(n)

Pandiagonal Latin Square: PLS(n)

Place different n numbers into n × n matrix
such that each number appears exactly once
for each row, column, diagonally down right,
and diagonally up right.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

We can write five SAT-based PLS Solvers within 35 lines.

Name Modeling Encoding Lines

AD1 alldiff naive 17
AD2 with Perm. & P. H. Const. 31

BC1 Boolean Pairwise 22
BC2 Cardinality Totalizer [Bailleux ‘03] 35
BC3 Seq. Counter [Sinz ‘05] 27

Let’s have a look their performance. Note that, in CSP Solver
Comp. 2009, NO CSP solver (except Sugar) could solve n > 8.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving PLS(n)

Results (CPU Time in Seconds)

n SAT/UNSAT AD1 AD2 BC1 BC2 BC3

7 SAT 0.2 0.2 0.2 0.3 0.3
8 UNSAT T.O. 0.5 0.3 0.3 0.3
9 UNSAT T.O. 0.3 0.5 0.3 0.2

10 UNSAT T.O. 0.4 1.0 0.3 0.3
11 SAT 0.3 0.3 2.3 0.5 0.4
12 UNSAT T.O. 1.0 5.3 0.8 0.8
13 SAT T.O. 0.5 T.O. T.O. T.O.
14 UNSAT T.O. 9.7 32.4 8.2 6.8
15 UNSAT T.O. 388.9 322.7 194.6 155.8
16 UNSAT T.O. 457.1 546.6 300.7 414.8

Optimized version of alldiff model (AD2) solved all instances.

Modeling and encoding have an important role in developing
SAT-based systems and Scarab helps us to focus on them.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving PLS(n)

Contents of Talk

1 Getting Started: Overview of Scarab

2 Designing Constraint Models in Scarab

3 Advanced Solving Techniques using Sat4j

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving PLS(n)

Contents of Talk

1 Getting Started: Overview of Scarab

2 Designing Constraint Models in Scarab

3 Advanced Solving Techniques using Sat4j ⇐=

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Advanced Solving

Incremental SAT Solving

CSP Solving under Assumption

Commit/Rollback

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Conclusion

Introducing Architecture and Features of Scarab

Using Scarab, we can write various constraint models without
developing dedicated encoders, which allows us to focus on
problem modeling and encoding.

Future Work
Introducing more features from Sat4j
Introducing more kinds of back-end solvers

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Supplemental Slides

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Encoded Variables in Order Encoding

Table: Truth table of p(x ≤ a)

x p(x ≤ 0) p(x ≤ 1) p(x ≤ 2)

0 1 1 1
1 0 1 1
2 0 0 1
3 0 0 0

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Scala

Scala is a relatively new programming language receiving an
increasing interest for developing real-world applications.

Scala is an integration of both functional and object-oriented
programming paradigms.

The main features of Scala are:

type inferences,
higher order functions,
immutable collections, and
concurrent computation.

It is also suitable for implementing Domain-Specific Language
(DSL)˜[?] embedded in Scala.

The Scala compiler generates Java Virtual Machine (JVM)
bytecode, and Java class libraries can be used in Scala.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Contents of Talk

1 Getting Started: Overview of Scarab
Architecture and Features
Example: Graph Coloring Problem

2 Designing Constraint Models in Scarab ⇐=

Pandiagonal Latin Square
alldiff Model
Boolean Cardinality Model

3 Advanced Solving Techniques using Sat4j
Incremental SAT Solving
CSP Solving under Assumption

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Pandiagonal Latin Square: PLS(n)

Place different n numbers into n × n matrix
such that each number appears exactly once
for each row, column, diagonally down right,
and diagonally up right.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

We can write five SAT-based PLS Solvers within 35 lines.

Name Modeling Encoding Lines

AD1 alldiff naive 17
AD2 with Perm. & P. H. Const. 31

BC1 Boolean Pairwise 22
BC2 Cardinality Totalizer [Bailleux ‘03] 35
BC3 Seq. Counter [Sinz ‘05] 27

Let’s have a look their performance. Note that, in CSP Solver
Comp. 2009, NO CSP solver (except Sugar) could solve n > 8.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Pandiagonal Latin Square: PLS(n)

Place different n numbers into n × n matrix
such that each number appears exactly once
for each row, column, diagonally down right,
and diagonally up right.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

We can write five SAT-based PLS Solvers within 35 lines.

Name Modeling Encoding Lines

AD1 alldiff naive 17
AD2 with Perm. & P. H. Const. 31

BC1 Boolean Pairwise 22
BC2 Cardinality Totalizer [Bailleux ‘03] 35
BC3 Seq. Counter [Sinz ‘05] 27

Let’s have a look their performance. Note that, in CSP Solver
Comp. 2009, NO CSP solver (except Sugar) could solve n > 8.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Designing Constraint Models in Scarab

Pandiagonal Latin Square PLS(n) is a problem of placing
different n numbers into n × n matrix such that each number is
occurring exactly once for each row, column, diagonally down
right, and diagonally up right.

alldiff Model
One uses alldiff constraint, which is one of the best known and
most studied global constraints in constraint programming.
The constraint alldiff(a1, . . . , an) ensures that the values
assigned to the variable a1, . . . , an must be pairwise distinct.

Boolean Cardinality Model
One uses Boolean cardinality constraint.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}

alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff Model

Pandiagonal Latin Square PLS(5)

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

xij ∈ {1, 2, 3, 4, 5}
alldiff in each row (5 rows)

alldiff in each column (5 columns)

alldiff in each pandiagonal (10 pandiagonals)

PLS(5) is satisfiable.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Scarab Program for alldiff Model

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val n = args(0).toInt

6:

7: for (i <- 1 to n; j <- 1 to n) int(’x(i,j),1,n)

8: for (i <- 1 to n) {
9: add(alldiff((1 to n).map(j => ’x(i,j))))

10: add(alldiff((1 to n).map(j => ’x(j,i))))

11: add(alldiff((1 to n).map(j => ’x(j,(i+j-1)%n+1))))

12: add(alldiff((1 to n).map(j => ’x(j,(i+(j-1)*(n-1))%n+1))))

13: }
14:

15: if (find) println(solution)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Encoding alldiff

In Scarab, all we have to do for implementing global
constraints is just decomposing them into simple arithmetic
constraints [Bessiere et al. ‘09].

In the case of alldiff(a1, . . . , an),

It is decomposed into pairwise not-equal constraints∧
1≤i<j≤n

(ai 6= aj)

.

This (naive) alldiff is enough to just have a feasible constraint
model for PLS(n).

But, one probably want to improve this :)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Extra Constraints for alldiff(a1, . . . , an)

In Pandiagonal Latin Square PLS(n), all integer variables
a1, . . . , an have the same domain {1, . . . , n}.
Then, we can add the following extra constraints.

Permutation constraints:

n∧
i=1

n∨
j=1

(aj = i)

It represents that one of a1, . . . , an must be assigned to i .

Pigeon hole constraint:

¬
n∧

i=1

(ai < n) ∧ ¬
n∧

i=1

(ai > 1)

It represents that mutually different n variables cannot be
assigned within the interval of the size n − 1.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff (naive)

def alldiff(xs: Seq[Var]) =

And(for (Seq(x, y) <- xs.combinations(2))

yield x !== y)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

alldiff (optimized)

def alldiff(xs: Seq[Var]) = {
val lb = for (x <- xs) yield csp.dom(x).lb

val ub = for (x <- xs) yield csp.dom(x).ub

// pigeon hole
val ph =

And(Or(for (x <- xs) yield !(x < lb.min+xs.size-1)),

Or(for (x <- xs) yield !(x > ub.max-xs.size+1)))

// permutation
def perm =

And(for (num <- lb.min to ub.max)

yield Or(for (x <- xs) yield x === num))

val extra = if (ub.max-lb.min+1 == xs.size) And(ph,perm)

else ph

And(And(for (Seq(x, y) <- xs.combinations(2))

yield x !== y),extra)

}
T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1

for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1

for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1

for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1

for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Boolean Cardinality Model

y11k y12k y13k y14k y15k

y21k y22k y23k y24k y25k

y31k y32k y33k y34k y35k

y41k y42k y43k y44k y45k

y51k y52k y53k y54k y55k

yijk ∈ {0, 1} yijk = 1⇔ k is placed at (i , j)

for each value (5 values)

for each row (5 rows) yi1k + yi2k + yi3k + yi4k + yi5k = 1
for each column (5 columns) y1jk + y2jk + y3jk + y4jk + y5jk = 1
for each pandiagonal (10 pandiagonals)
y11k + y22k + y33k + y44k + y55k = 1

for each (i , j) position (25 positions) yij1 + yij2 + yij3 + yij4 + yij5 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Scarab Program for Boolean Cardinality Model

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: for (i <- 1 to n; j <- 1 to n; num <- 1 to n)

6: int(’y(i,j,num),0,1)

7:

8: for (num <- 1 to n) {
9: for (i <- 1 to n) {

10: add(BC((1 to n).map(j => ’y(i,j,num)))===1)

11: add(BC((1 to n).map(j => ’y(j,i,num)))===1)

12: add(BC((1 to n).map(j => ’y(j,(i+j-1)%n+1,num))) === 1)

13: add(BC((1 to n).map(j => ’y(j,(i+(j-1)*(n-1))%n+1,num))) === 1)

14: }
15: }
16:

17: for (i <- 1 to n; j <- 1 to n)

18: add(BC((1 to n).map(k => ’y(i,j,k))) === 1)

19:

20: if (find) println(solution)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

SAT Encoding of Boolean Cardinality in Scarab

There are several ways for encoding Boolean cardinality.

In Scarab, we can easily write the following encoding methods
by defining your own BC methods.

Pairwise
Totalizer [Bailleux ‘03]
Sequential Counter [Sinz ‘05]

In total, 3 variants of Boolean cardinality model are
obtained.

BC1: Pairwise (implemented by 2 lines)
BC2: Totalizer [Bailleux ‘03] (implemented by 15 lines)
BC3: Sequential Counter [Sinz ‘05] (implemented by 7 lines)

Good point to use Scarab is that we can test those models
without writing dedicated programs.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Experiments

Comparison on Solving Pandiagonal Latin Square

To show the differences in performance, we compared the following
5 models.

1 AD1: naive alldiff

2 AD2: optimized alldiff

3 BC1: Pairwise

4 BC2: [Bailleux ‘03]

5 BC3: [Sinz ‘05]

Benchmark and Experimental Environment

Benchmark: Pandiagonal Latin Square (n = 7 to n = 16)

CPU: 2.93GHz, Mem: 2GB, Time Limit: 3600 seconds

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Results (CPU Time in Seconds)

n SAT/UNSAT AD1 AD2 BC1 BC2 BC3

7 SAT 0.2 0.2 0.2 0.3 0.3
8 UNSAT T.O. 0.5 0.3 0.3 0.3
9 UNSAT T.O. 0.3 0.5 0.3 0.2

10 UNSAT T.O. 0.4 1.0 0.3 0.3
11 SAT 0.3 0.3 2.3 0.5 0.4
12 UNSAT T.O. 1.0 5.3 0.8 0.8
13 SAT T.O. 0.5 T.O. T.O. T.O.
14 UNSAT T.O. 9.7 32.4 8.2 6.8
15 UNSAT T.O. 388.9 322.7 194.6 155.8
16 UNSAT T.O. 457.1 546.6 300.7 414.8

Only optimized version of alldiff model (AD2) solved all instances.

Modeling and encoding have an important role in developing
SAT-based systems.

Scarab helps users to focus on them ;)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC1: Pairwise

Definition of BC1

def BC1(xs: Seq[Var]): Term = Sum(xs)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC1: Pairwise (cont.)

Scarab Program for x + y + z = 1

int(’x,0,1)

int(’y,0,1)

int(’z,0,1)

add(BC1(Seq(’x, ’y, ’z)) === 1)

CNF Generated by Scarab

p(x ≤ 0) ∨ p(y ≤ 0)
p(x ≤ 0) ∨ p(z ≤ 0)
p(y ≤ 0) ∨ p(z ≤ 0)

 x + y + z ≤ 1

¬p(x ≤ 0) ∨ ¬p(y ≤ 0) ∨ ¬p(z ≤ 0) } x + y + z ≥ 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC2: [Bailleux ‘03]

Definition of BC2

def BC2(xs: Seq[Var]): Term = {
if (xs.size == 2) xs(0) + xs(1)

else if (xs.size == 3) {
val v = int(Var(), 0, 1)

add(v === BC2(xs.drop(1)))

xs(0) + v

} else {
val (xs1, xs2) =

xs.splitAt(xs.size / 2)

val v1 = int(Var(), 0, 1)

val v2 = int(Var(), 0, 1)

add(v1 === BC2(xs1))

add(v2 === BC2(xs2))

v1 + v2

}
}

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC2: [Bailleux ‘03] (cont.)

Scarab Program for x + y + z = 1

int(’x,0,1)

int(’y,0,1)

int(’z,0,1)

add(BC2(Seq(’x, ’y, ’z)) === 1)

CNF Generated by Scarab (q is auxiliary variable)

q ∨ ¬p(y ≤ 0) ∨ ¬p(z ≤ 0)
¬q ∨ p(z ≤ 0)
¬q ∨ p(y ≤ 0)

p(y ≤ 0) ∨ p(z ≤ 0)

 y + z = S

q ∨ p(x ≤ 0)
¬q ∨ ¬p(x ≤ 0)

}
x + S = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC3: [Sinz ‘05]

Definition of BC3

def BC3(xs: Seq[Var]): Term = {
val ss =

for (i <- 1 until xs.size) yield int(Var(), 0, 1)

add(ss(0) === xs(1) + xs(0))

for (i <- 2 until xs.size)

add(ss(i-1) === (xs(i) + ss(i-2)))

ss(xs.size-2)

}

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC3: [Sinz ‘05] (cont.)

Program for x + y + z = 1

int(’x,0,1)

int(’y,0,1)

int(’z,0,1)

add(BC3(Seq(’x, ’y, ’z))===1)

CNF Generated by Scarab (q1 and q2 are auxiliary variables)

q1 ∨ ¬p(y ≤ 0) ∨ ¬p(x ≤ 0)
¬q1 ∨ p(x ≤ 0)
¬q1 ∨ p(y ≤ 0)

p(x ≤ 0) ∨ p(y ≤ 0)

 x + y = S1

q2 ∨ ¬q1 ∨ ¬p(z ≤ 0)
¬q2 ∨ q1
¬q2 ∨ p(z ≤ 0)
q1 ∨ p(z ≤ 0)

S1 + z = S2

¬q2 } S2 = 1

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

BC Native Encoder (work in progress)

We have tested Boolean Cardinality Encoder (BC Native
Encoder), which natively encodes Boolean cardinality
constraints by using addAtMost or addAtLeast methods of
Sat4j

Preliminary Results (CPU time in seconds)

n SAT/UNSAT #Clauses #Constraints time (sec) time (sec)
(BC1) (BC Enc.) (BC1) (BC Enc.)

7 SAT 5341 441 0.1 0.1
8 UNSAT 9216 576 0.3 0.1
9 UNSAT 14904 729 0.5 0.1

10 UNSAT 22900 900 1.0 0.1
11 SAT 33759 1089 2.2 0.1
12 UNSAT 48096 1296 5.3 0.3
13 - 66586 1521 T.O. T.O.
14 UNSAT 89964 1764 32.3 6.7
15 UNSAT 119025 2025 322.6 672.5
16 UNSAT 154624 2304 546.5 1321.4

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Example: Square Packing

Square Packing SP(n, s) is a problem of packing a set of
squares of sizes 1× 1 to n× n into an enclosing square of size
s × s without overlapping.

Example of SP(15, 36)

15
14

13 12 11

109 8

7

6

54

32 1

Optimum soluiton of SP(n, s) is the smallest size of the
enclosing square having a feasible packing.

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Non-overlapping Constraint Model for SP(n, s)

Integer variables

xi ∈ {0, . . . , s − i} and yi ∈ {0, . . . , s − i}
Each pair (xi , yi) represents the lower left coordinates of the
square i .

Non-overlapping Constraint (1 ≤ i < j ≤ n)

(xi + i ≤ xj) ∨ (xj + j ≤ xi) ∨ (yi + i ≤ yj) ∨ (yj + j ≤ yi)

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Decremental Seach

Scarab Program for SP(n, s)

for (i <- 1 to n) { int(’x(i),0,s-i) ; int(’y(i),0,s-i) }
for (i <- 1 to n; j <- i+1 to n)

add((’x(i) + i <= ’x(j)) || (’x(j) + j <= ’x(i)) ||

(’y(i) + i <= ’y(j)) || (’y(j) + j <= ’y(i)))

Searching an Optimum Solution

val lb = n; var ub = s; int(’m, lb, ub)

for (i <- 1 to n)

add((’x(i)+i <= ’m) && (’y(i)+i <= ’m))

// Incremental solving

while (lb <= ub && find(’m <= ub)) { // using an assumption.

add(’m <= ub)

ub = solution.intMap(’m) - 1

}

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

Introduction Scarab Constraint Model Advanced Solving Adbanced Solving

Bisection Search

Bisection Search

var lb = n; var ub = s; commit

while (lb < ub) {
var size = (lb + ub) / 2

for (i <- 1 to n)

add((’x(i)+i<=size)&&(’y(i)+i<=size))

if (find) {
ub = size

commit // commit current constraints

} else {
lb = size + 1

rollback // rollback to the last commit point

}
}

T. Soh, N, Tamura, M. Banbara, D. Le Berre, and S. Roussel Scarab: a Prototyping Tool for SAT-based CP Systems

	Introduction
	Introduction
	Contents

	Scarab
	Overview
	Example

	Constraint Model
	PLS(n)

	Advanced Solving
	Adbanced Solving

