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Boolean Network 
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 Discrete model of genetic networks and adaptive systems 

 N = (V, F)  

•  V = {v1, …, vn} : finite set of nodes ⇔ gene  

•  F = {f1, …., fn} : Boolean functions ⇔ gene regulation rule 

Boolean network 
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Attractors 

• Periodic sequence of states 

– 011 → 101 → 010 → 
101 → 010 → … 

– 111 → 110 → 100 → 
000 → 001 → 001 → … 

• Different attractors ⇔ 
Different cell types 

• In Synchronous BN, any 
node reaches one attractor.   

State transition diagram 
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Normal Logic Programs 

• A normal logic program (NLP) P is a set of rules: 

H  A1  …  Am  B1  …  Bn  (m,n  0) 

 where H, Ai and Bj are atoms and   is (default) negation.   

• P is definite if n = 0 for every rule in P.    

• ground(P) : the set of ground instances of all rules in P. 

• The Herbrand base HP is the set of ground atoms from language(P). 

• An (Herbrand) interpretation of an NLP P is a subset of HP.  

• An interpretation I satisfies a ground rule of the form: 

H  A1  …  Am  B1  …  Bn 

    iff  i. Ai  I and j. Bj  I imply that H  I. 

• I is an (Herbrand) model of P if I satisfies all rules in ground(P). 



TP operator 

• TP (I)  :=  { H | H  L1 ... Ln  ground(P),  I ╞ L1 ... Ln }. 

• When P is a definite program, I ╞ A1 ... Am iff i. Ai  I.   

     In this case, TP operator is monotone, and the sequence   

I0 = {},   In+1 = TP(In)  (n=0,...)  

     reaches the least fixpoint of TP, denoted as I* = TP↑ω: I* = TP (I*).  
TP↑ω is the least model of P (van Emden & Kowalski, 1976).     

• When P is a normal program,   

      I ╞ A1 … Am  B1 … Bn   iff  i. Ai  I and j. Bj I.   

     In this case, TP is nonmonotone (Apt, Blair & Walker, 1988). 

• The orbit of I wrt P (Blair et al., 1997) is  TP
k(I)k=0,1,2,…,  

     where TP
0(I) = I,  TP

k+1(I) = TP(TP
k(I)) for k = 0, 1, 2, …. .   



TP operator, supportedness, completion 

• An interpretation I is supported (Apt, Blair & Walker, 1988) 
if  A I. (A A1…AmB1 …Bn)  ground(P) 
such that i. Ai  I and j. Bj  I. 

• Prop.  An interpretation I is a model of P iff  TP (I)  I .  

• Prop.  I is supported iff  I  TP (I) .  

• Cor.  I is a supported model of P iff  I = TP (I) .  

• Prop.  I is a model of Comp(P) iff  I = TP (I) , where 
Comp(P) is Clark’s completion of P .  

• Cor.  I is a supported model of P iff I is a model of 
Comp(P).   



TP operator for NLPs 

• p  q.  

• p  r. 

• r  p  q. 

 

 

1. {}   

2. {p}  

3. {p,r} 

4. {r} 

5. {} 

6. repeat 2—5  

 

• TP   is nonmonotone.   

• No fixpoint is reached in general.  

• No supported model exists here.   

      



Translating Synchronous BNs into NLPs 
(Inoue, IJCAI 2011) 

Given a BN N = (V, F), transform each fi F to DNF:  

 

 

 

VC   V :  constant nodes (j=0) 

 

 

• For any state v(t)  {0,1}n, put  It = { vi V | vi(t) = 1 }.   

• It+1 = Tπ(N)(I
t).   The orbit of It wrt Tπ(N) is precisely the 

trajectory of N starting from v(t).  
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Boolean Network (Example) 
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 Starting from v(0)=(0,1,1), the 
orbit of I0 wrt π(N) becomes:  

1. {q, r}  

2. {p, r}  

3. {q} 

4. {p, r} 

5. repeat 3—2  

 Starting from v(0)=(0,0,0), the 
orbit of I0 wrt π(N) becomes:  

1. {}  

2. {r}  

3. {r} 

4. fixpoint 

 

p 

q r 



Characterizing Point Attractors 

• Theorem (Inoue, 2011):  {I} is a point attractor of N iff I is a 
supported model of π(N).   

• The supported models of an NLP are exactly the models of its 
Clark’s completion:  

 

 

 

     c.f. (Tamura & Akutsu, 2009). 
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Supported Classes 
(Inoue & Sakama, Lifschitz Festschrift, 2012) 

• A supported class of a logic program P is defined as a nonempty 
set S of Herbrand interpretations satisfying the fixpoint equation: 

S = { TP(I) | I ∈ S }.  

• A supported class S of P is strict if no proper subset of S is a 
supported class of P.   

• Theorem:  A non-empty set S of Herbrand interpretations is a 
strict supported class of P iff S = {TP

k(I) | k∈ω} for every I ∈ S. 

• Theorem:  A finite set S of Herbrand interpretations of P is a strict 
supported class of P iff there is a directed cycle I1 → I2 → ・ ・ ・ → 
Ik → I1 (k ≥ 1) in the state transition graph induced by TP such that 
{I1, I2, . . . , Ik} = S. 

• Prop.:  Let S and S’ be strict supported classes of a logic program P 
that has a finite Herbrand base.  Then, S ≠ S’ iff S ∩ S’ = {}. 



Characterizing Attractors 

• Theorem (Inoue & Sakama, 2012): S is an attractor of a Boolean 
network N iff S is a strict supported class of π(N).   

 

• Proposition:  An interpretation I is a supported model of a logic 
program P iff {I} is a supported class of P. 

• Corollary: {I} is a point attractor of a Boolean network N iff I is a 
supported model of π(N).   

 

 

 



Supported Classes = Attractors 

• P1:   

p   ￢q. 

q  ￢p. 

r    q. 

• There are 3 strict supported classes of P1:  

S1 = {{p}},  S2 = {{q, r}},  S3 = {{p, q}, {r}}. 

• S1 and S2 are the supported models of P1 (point attractors).   

{r} {p,q} 

{p,q,r} {} 
{p,r} 

{p} 

{q} 

{q,r} 



Repressilator (Elowitz & Leibler, Nature 403, 2000) 

• π(N) has no supported model, but has 2 supported classes, which 
correspond to cycle attractors with period 2 and 6.   
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Learning Dynamics of Systems 
• Learning action theories in ILP 

– Event calculus: Moyle & Muggleton (1997), Moyle (2003) 
– Logic programs: with situation calculus: Otero (2003, 2005) 
– Action languages: Inoue et al. (2005), Tran & Baral (2009) 
– Probabilistic logic programs: Corapi et al. (2011) 

• Relational reinforcement learning 
– Logic programs: Džeroski et al. (2001) 

• Abductive action learning 
– Abductive event calculus: Eshghi (1988), Shanahan (2000) 

• Active learning of action models 
– STRIPS-like: Rodrigues et al. (2011) 

 

• These works suppose applications to robotics and bioinformatics.     

• However, it is hard to infer rules of systems dynamics due to 
presence of positive and negative feedbacks.   



LFIT: Learning from Interpretation Transitions 
 (Inoue, Ribeiro & Sakama, Machine Learning, 2013) 

• Herbrand interpretation I: a state of the world 

• Logic program P: a state transition system, which maps an 
Herbrand interpretation into another interpretation (Blair et al., 
1995—1997; Inoue, 2011; Inoue & Sakama, 2012) 

• Next state TP(I): where TP is the immediate consequence operator 
(TP operator).   

• We propose a new learning setting in ILP: 
– Given: a set of pairs of Herbrand interpretations (I,J) such that 

J = TP(I),  
– Induce a program P.  

• C.f. learning from interpretations (LFI) 
– Given: a set S of Herbrand interpretations,  
– Induce a program P whose models are exactly S.   

 



LFIT Applied to Dynamic Systems 

• Learning rules of dynamic systems 
– Cellular Automata (CAs): mathematical model of complex 

adaptive systems (Conway, Wolfram) 
– Boolean Networks (BNs): logical model of gene regulation 

networks (Kauffman) 

• CAs and BNs can be characterized as logic programs, and TP 
operator captures their synchronous update (Inoue 2011). 

 
• A learned program P is a normal logic program (NLP) in this case. 

• Learning NLPs has been considered in ILP, but most approaches 
take the setting of learning from entailment. 

• Learning NLPs under the supported model semantics.    



LFIT Applied to Genetic Networks 

• Given an Herbrand interpretation I, which corresponds to a gene 
activity profile (GAP) with gene disruptions for false atoms in I 
and gene overexpressions for true atoms in I, the interactions 
between genes are experimentally analyzed by observing a GAP J 
such that J = TP (I) holds after a time step has passed. 

• LFIT of an NLP P corresponds to inferring a set of gene regulation 
rules for those experiments of 1-step GAP transitions in a BN.  

• Any trajectory from a GAP in a BN reaches an attractor, which is 
either a fixed point or a periodic oscillation.  

• Given a set of trajectories reaching to attractors of a BN, we can 
also infer an NLP that realizes these trajectories.    



Subsumption, least generalization 

• For two rules R1, R2 with the same head, R1 subsumes R2 if there 
is a substitution θ s.t. b+(R1)θ ⊆ b+(R2) and b−(R1)θ ⊆ b−(R2).  

• A rule R is the least (general) generalization (lg) of R1 and R2, 
written as R = lg(R1,R2), if R subsumes both R1 and R2 and is 
subsumed by any rule that subsumes both R1 and R2.  

• The lg of two atoms p(s1,… , sn) and q(s1,… , sn) is undefined if p 
≠ q; and is p(lg(s1,t1), …, lg(sn,tn)) if p = q.  

• The lg of two rules lg(R1,R2) is then written as:  
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LF1T: Learning from 1-Step Transitions 

• Input: E ⊆ 2B × 2B: (positive) examples/observations,  

                 P : an (initial) NLP;  

• Output: NLP P  s.t.   J = TP(I)  holds for any (I, J) ∈ E 
 

1. If E = ∅ , then output P and stop; 

2. Pick (I, J) ∈ E;  put E := E ¥ {(I, J)}; 

3. For each A ∈ J, let    

RI
A :=  A    ∧ B∈I B  ∧  ∧ C∈B¥I￢C ; 

1. If RI
A is not subsumed by any rule in P, then P := P ∪ {RI

A} 
and simplify P by generalizing some rules in P and removing 
all clauses subsumed by them; 

2. Return to 1. 
 



Resolution as Generalization 

• (naïve/ground resolution) Let R1 and R2 be two ground rules, 
and l be a literal such that h(R1) = h(R2), l ∈ b(R1) and Ī ∈ b(R2). 
If (b(R2) ¥ {Ī }) ⊆ (b(R1) ¥ {l}) then the ground resolution of R1 and 
R2 (upon l) is defined as 

           res(R1,R2)  =  h(R1)  ←  ∧K ∈ b(R1)¥{l}  K  
     In particular, if (b(R2) ¥ {Ī }) = (b(R1) ¥ {l}) then the ground 

resolution is called the naïve resolution of R1 and R2 (upon l). 

• Example.  R1 = (p ← q∧r), R2 = (p ← ￢q∧r), R3 = (p ←￢q):  

      res(R1,R2) = res(R1,R3) = (p ← r). 

• Proposition. The naïve resolution of R1 and R2 is the least 
generalization of them, e.g., lg(R1,R2) = res(R1,R2). 

 



LF1T (naïve resolution)  [RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B¥I￢C] 

Step I → J Operation Rule ID P Pold 

1 qr→pr Rqr
p  p  ￢p ∧ q ∧ r 1 1 {} 

Rqr
r  r  ￢p ∧ q ∧ r 2 1,2 

2 pr→q Rpr
q  q  p ∧ ￢q ∧ r 3 1,2,3 

3 q→pr Rq
p  p  ￢p ∧ q ∧ ￢r 4 

res(4,1) p  ￢p ∧ q  5 2,3,5 +1,4 

Rq
r  r  ￢p ∧ q ∧ ￢r 6 

res(6,2) r  ￢p ∧ q  7 3,5,7 +2,6 

4 pqr→pq Rpqr
p  p  p ∧ q ∧ r 8 

res(8,1) p  q ∧ r  9 3,5,7,9 +8 

Rpqr
q  q  p ∧ q ∧ r 10 

res(10,3) q  p ∧ r  11 5,7,9,11 +3,10 

 pqr               pq                  p                     ε         r 

 qr                pr               q 



Cont. (naïve resolution)  [RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B¥I￢C] 

Step I → J Operation Rule ID P Pold 

5 pq→p Rpq
p  p  p ∧ q ∧ ￢r 12 

res(12,5) p  q ∧ ￢r  13 5,7,9,11,13 +12 

res(13,9) p  q 14 7,11,14 +5,9,13 

6 p→ε 

7 ε→r Rε
r  r  ￢p ∧ ￢q ∧ ￢r 15 

res(15,6) r  ￢p ∧ ￢r 16 7,11,14,16 +15 

8 r→r Rr
r  r  ￢p ∧ ￢q ∧ r 17 

res(17,15) r  ￢p ∧ ￢q 18 7,11,14,16,18 +17 

res(18,7) r  ￢p 19 11,14,19 +7,16,18 

p   q.  

q  p ∧ r. 
r   ￢p. 

propositional program 

p(t+1)   q(t).  

q(t+1)  p(t) ∧ r(t). 
r(t+1)   ￢p(t). 

first-order program 



LF1T (ground resolution)  [RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B¥I￢C] 

Step I → J Operation Rule ID P 

1 qr→pr Rqr
p  p  ￢p ∧ q ∧ r 1 1 

Rqr
r  r  ￢p ∧ q ∧ r 2 1,2 

2 pr→q Rpr
q  q  p ∧ ￢q ∧ r 3 1,2,3 

3 q→pr Rq
p  p  ￢p ∧ q ∧ ￢r 4 

res(4,1) p  ￢p ∧ q  5 2,3,5 

Rq
r  r  ￢p ∧ q ∧ ￢r 6 

res(6,2) r  ￢p ∧ q  7 3,5,7 

4 pqr→pq Rpqr
p  p  p ∧ q ∧ r 8 

res(8,5) p  q ∧ r  9 3,5,7,9 

Rpqr
q  q  p ∧ q ∧ r 10 

res(10,3) q  p ∧ r  11 5,7,9,11 

 pqr               pq                  p                     ε         r 

 qr                pr               q 



Cont. (ground resolution)  [RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B¥I￢C] 

Step I → J Operation Rule ID P 

5 pq→p Rpq
p  p  p ∧ q ∧ ￢r 12 

res(12,5) p  q ∧ ￢r  13 5,7,9,11,13 

res(13,9) p  q 14 7,11,14 

6 p→ε 

7 ε→r Rε
r  r  ￢p ∧ ￢q ∧ ￢r 15 

res(15,7) r  ￢p ∧ ￢r 16 7,11,14,16 

8 r→r Rr
r  r  ￢p ∧ ￢q ∧ r 17 

res(17,7) r  ￢p ∧ ￢q 18 7,11,14,16,18 

res(18,16) r  ￢p 19 11,14,19 

p   q.  

q  p ∧ r. 
r   ￢p. 

propositional program 

p(t+1)   q(t).  

q(t+1)  p(t) ∧ r(t). 
r(t+1)   ￢p(t). 

first-order program 



Worst-Case Complexity 

• Theorem.  Using naïve resolution, the memory use of the 
LF1T algorithm is bounded by O(n・3n), and the time 
complexity of learning is bounded by O(n2・9n), where n = 
|B|. On the other hand, with ground resolution, the memory 
use is bounded by O(2n), which is the maximum size of P, 
and the time complexity is bounded by O(4n).   

• Corollary.  Given the set E of complete state transitions, 
which has the size O(2n), the complexity of LF1T(E,∅) with 
ground resolution is bounded by O(|E|2). On the other hand, 
the worst-case complexity of learning with naïve resolution 
is O(n2・|E|4.5).   



LFBA: Learning from Basins of Attraction 

• Input: E ⊆ 22B: A set of orbits of interpretations (*) 

• Output: NLP P  s.t. for ∀I ∈ E, any I ∈ I belongs to the 
basin of attraction of some attractor of P contained in I 

• * Assumption: Each I  contains the interpretations belonging to the orbit 
of some I0 ∈I  wrt TP, and that I  constitutes a sequence I0 → I1 → … → 
Ik−1 → J0 → … → Jl−1 → J0 → … , where |I|= k + l and {J0, … , Jl−1} is an 
attractor. 

• 2 orbits I,J ∈ E  reach the same attractor iff I ∩ J = ∅ . 

 

1. Put P := ∅;  

2. If E = ∅ then output P and stop; 

3. Pick I ∈ E, and put E := E ¥ {I}; 

4. Put E := {(I, J) | I, J ∈ I,  J is the next state of I}; 

5. P := LF1T(E, P); Return to 2. 



LFBA: Example 

 pqr               pq                  p                     ε         r 

 qr                pr               q 

Input: E  =  {I1,  I2}  
I1  :   qr → pr →  q → pr →  q → … 
I2 : pqr → pq →  p → ε →  r →  r → …  
 
LF1T(E1, ∅, ∅ ) = {3,5,7};  
LF1T(E2, {3,5,7}) = {11,14,19}; 
 
In general, identification of an exact NLP using LF1T may 
require 2|B| examples, while |E| in LFBA is bounded by cδ, 
where δ is the number of attractors.    

p 

q r 



Learning Boolean Networks 

• Benchmarks of Boolean networks are taken from (Dubrova and 
Teslenko, 2011).   

• All possible 1-step state transitions of N from all 2|B| possible 
initial states I0’s are computed from the benchmarks by firstly 
computing all stable models of τ(N) ∪ I0  using the answer set 
solver clasp, then by running LF1T with these state transitions.   

• Environment: Intel Core I7 (3610QM, 2.3GHz). Time limit: 1 hour.  

• Boosting  is effective to reduce the size/number of rules.   



Cellular Automata (CA) 

• A CA consists of a regular grid of cells.  

• A cell has a finite number of possible states.  

• The state of each cell changes synchronously in discrete time steps 
according to local and identical transition rules.  

• The state of a cell in the next time step is determined by its current 
state and the states of its surrounding cells (neighborhood).  

• 2-state CA is regarded as an instance of Boolean networks.   

• CA is a model of emergence and self-organization, which are two 
important features of the nature (the real life) as a complex system. 

• 1-dimensional 2-state CA can simulate Turing Machine (Wolfram).   

• Multi-state CA: Disease Spreading Model—0 (healthy), 1 (infected), 
values in between (gradually more ill) 



Wolfram’s Rule 110 

current pattern 111 110 101 100 011 010 001 000 

new state for 
center cell 

0 1 1 0 1 1 1 0 

• c(x,t+1)  c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t). 

• c(x,t+1)  c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t). 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ c(x+1,t). 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t). 

• c(x,t+1)  ￢c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t). 

 

• Rule 110 is known to be Turing-complete.   

• The logic program is acyclic (Apt & Bezem, 1990).    

t 0 1 2 3 4 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 



Incorporating Background Theories 

• Torus world: length 4 

• c(0, t) c(4, t).  

• c(5, t) c(1, t).   

 

     c(3)  

→ c(2), c(3)   

→ c(1), c(2), c(3)   

→ c(1), c(3), c(4)       attractor 

→ c(1), c(2), c(3) → … 

 

learning rules:       0→1 (4), 1→2 (2), 2→3 (2).  

learning positive rules:  (2),          (2),           (1).  

t (4) 1 2 3 4 (1) 

0 

1 

2 

3 

4 

5 

6 



Incorporating Inductive Bias 
• Bias I: The body of each rule exactly contains 3 neighbor literals.  
• Bias II: The rules are universal for every time step and any position.   
• Biases I and II imply that anti-instantiation (AI) can be applied 

immediately instead of least generalization.   

      Step I → J Op. Rule ID P 

1 0010→0110 R3
2  c(2)  ￢c(1) ∧ ￢c(2) ∧ c(3) 1 

AI(1) c(x)  ￢c(x-1) ∧ ￢c(x) ∧ 
c(x+1) 

2 2 

R3
3  c(3)  ￢c(2) ∧ c(3) ∧ ￢c(4) 3 

AI(3) c(x)  ￢c(x-1) ∧ c(x) ∧ 
￢c(x+1) 

4 2,4 

2 0110→1110 R2
1 c(1)  ￢c(0) ∧ ￢c(1) ∧ c(2) 5 

R23
2 c(2)  ￢c(1) ∧ c(2) ∧ c(3) 6 

AI(6) c(x)  ￢c(x-1) ∧ c(x) ∧ c(x+1) 7 

res(7,2) c(x)  ￢c(x-1) ∧ c(x+1) 8 4,8 

res(7,4) c(x)  ￢c(x-1) ∧ c(x)  9 8,9 



Incorporating Inductive Bias (Cont.) 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x+1,t).       (8) 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t).            (9) 

• c(x,t+1)  c(x,t) ∧ ￢c(x+1,t).          (12) 

• c(x,t+1)  ￢c(x,t) ∧ c(x+1,t).          (16) 

These are simpler than the original 5 rules, but still have one redundant rule.   

Step I → J Op. Rule ID P 

2 0110→1110 R23
3  c(3)  c(2) ∧ c(3) ∧ ￢c(4) 10 

AI(10) c(x)  c(x-1) ∧ c(x) ∧ ￢c(x+1) 11 

res(11,9) c(x)  c(x) ∧ ￢c(x+1) 12 8,9,12 

3 1110→1011 R01
1  c(1)  ￢c(0) ∧ c(1) ∧ c(2) 13 

R34
4 c(4)  c(3) ∧ ￢c(4) ∧ c(5) 14 

AI(14) c(x)  c(x-1) ∧ ￢c(x) ∧ c(x+1) 15 

res(15,8) c(x)  ￢c(x) ∧ c(x+1) 16 8,9,12,16 



Conclusion & Ongoing Work 

• Oscillating behavior can be observed in any deterministic operator on the 
Herbrand base.  The attractors of synchronous Boolean networks are 
completely characterized by the supported class semantics of NLPs.   

• Learning complex networks becomes more and more important.  We tackled 
the induction problem of such dynamic systems in terms of NLP learning from 
synchronous state transitions.  

– Given any state transition diagram, which is either complete or partial, we can 
learn an NLP that exactly captures the system dynamics. 

– Learning is performed only from positive examples, and produces NLPs that consist 
only of rules to make literals true. 

– Generalization on state transition rules is done by resolution, in which each rule 
can be replaced by a general rule.  An output NLP is as minimal as possible wrt the 
size of each rule, but may contain redundant rules. 

• A more efficient construction in the bottom-up algorithm with BDD (ILP 2013).  

• More complex schemes such as asynchronous and probabilistic updates do 
not obey transition by the TP operator.  
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