Inference of Dynamic Boolean Networks
BRI~ DRBET VST SR FE

IO

Katsumi Inoue
HE 7B

National Institute of Informatics, Japan
ESRVA 5

CSPSAT2-ERATO Minato Projects Joint Seminar on Theory,
Implementation, and Applications of Logic and Inference

MELIROER, R, SACET 5B REIF—
Hokkaido University, Sapporo, July 25, 2013

Boolean Network

1 Discrete model of genetic networks and adaptive systems
® N=(V,F)
* V={v, .., v, }:finite set of nodes < gene
* F={f,,f,} : Boolean functions < gene regulation rule

Boolean network State transition table
Input Output

Time t Time t+1

p _q r p q r
0 0 0 0 0 1
O 0 0 1 0 0 1
r 0 1 0 1 0 1
0o 1 1 1 0 1
p(t+1) = q(t) 1 0 O o 0 1
qt+1) = p(t) Ar(t) 1 o 1]0 1 1
_ 1 1 0 1 0 0
r(t+1) = p(t) 1 1 1011 1 o0

Attractors

p(t+1) = q(t)
qt+1) = p(t) Ar(t)
rit+1) = p(t)

Periodic sequence of states

— 011> 101 - 010 =
101 - 010 - ...

— 111 - 110 - 100 -
000 - 001 - 001 - ...

Different attractors <
Different cell types

In Synchronous BN, any
node reaches one attractor.

State transition diagram

Q0

JaoaY

3@

Normal Logic Programs

A normal logic program (NLP) P is a set of rules:
H<<AAN..AA A=B A..A=B, (mn=0)

where H, A; and B; are atoms and — is (default) negation.

P is definite if n = 0 for every rule in P.

ground(P) : the set of ground instances of all rules in P.

The Herbrand base H, is the set of ground atoms from language(P).

An (Herbrand) interpretation of an NLP P is a subset of H,.

An interpretation / satisfies a ground rule of the form:
H<<AAN..AA A=B A..A=B,

iff Vi.A;elandVj. B;¢ limply thatH € /.

| is an (Herbrand) model of P if | satisfies all rules in ground(P).

I, operator

To(l) = {H|H< L A.AL,€ground(P), | EL,A..AL,}

When P is a definite program, / |=A1 AAAITEYIA €L
In this case, T, operator is monotone, and the sequence
lyb={}, 1,.,=Tul) (n=0,...)

reaches the least fixpoint of T,, denoted as I* = T, T w: I* = T, (I*).
T,Tw is the least model of P (van Emden & Kowalski, 1976).

When P is a normal program,

/ |=A1/\.../\ ApA—BiAA=B, iff Vi A eland V). Bg |.
In this case, T, is nonmonotone (Apt, Blair & Walker, 1988).
The orbit of I wrt P (Blair et al., 1997) is {T,“())s0.12
where T,0(/) =1, T, (I) = Ty(T,X(/)) fork=0, 1, 2,

T, operator, supportedness, completion

* An interpretation / is supported (Apt, Blair & Walker, 1988)
if VA €l. 3(A <A A..AA_A=B, A...A=B,) € ground(P)
such that Vi. A; € Iand Vj. B, |.

* Prop. An interpretation /is a model of Piff T,(l) = 1.
* Prop. /issupportediff I T,(/).
* Cor. /is asupported model of Piff I=T,(l).

* Prop. /is a model of Comp(P) iff I=T,(l), where
Comp(P) is Clark’s completion of P.

 Cor. /is asupported model of P iff | is a model of
Comp(P).

T, operator for NLPs

* p & . 2. {p}
3. {p,r}
® < —(.
PA—A 4. {r}
5. {}
6. repeat 2—5

* T, isnonmonotone.
* No fixpoint is reached in general.
* No supported model exists here.

Translating Synchronous BNs into NLPs

(Inoue, IJCAIl 2011)
Given a BN N = (V, F), transform each f; eF to DNF:

T (t) = \/B. i (D),

=

BI J(t) Vi Jl(t)/\ AV, (t)/_'vl Jum; +1(t)/\ AV g (t)

i, j,m;
V. < V: constant nodes (j=0)
7(N)={(v, < B ;)| vieV\V., 1< <I}

U{(v; «<-V.)|v. eV .}

* For any state v(t) € {0,1}", put I'={v, eV |v(t)=11}

* [*1=T (). The orbit of f'wrt T, is precisely the
trajectory of N starting from v(t).

Boolean Network (Example)

® Starting from v(0)=(0,1,1), the
@ orbit of I, wrt (N) becomes:
. g, 1}
. Ap, r}
. g}
. Ap, r}
. repeat 3—2

Starting from v(0)=(0,0,0), the
orbit of /, wrt t(N) becomes:

i
U}
U}

fixpoint

©
e V1 H W N B

p < Q.
< pAT.
r < —p.

-l A

Characterizing Point Attractors

 Theorem (Inoue, 2011): {/} is a point attractor of N iff / is a
supported model of rt(N).

* The supported models of an NLP are exactly the models of its
Clark’s completion:

I

Comp(z(N))= A {vi (—)\II/BLJ-)/\# ;

v;eV\C j=1 c,eC

c.f. (Tamura & Akutsu, 2009).

Supported Classes
(Inoue & Sakama, Lifschitz Festschrift, 2012)

A supported class of a logic program P is defined as a nonempty
set S of Herbrand interpretations satisfying the fixpoint equation:

S={T,) | I €S}
A supported class S of P is strict if no proper subset of Sis a
supported class of P.

Theorem: A non-empty set S of Herbrand interpretations is a
strict supported class of Piff § = {T,%(/) | kE w} for every | € §.

Theorem: A finite set S of Herbrand interpretations of P is a strict

supported class of P iff there is a directed cyclel, >, > = = = -
I, > I, (k 2 1) in the state transition graph induced by T, such that

{1, ...,1.}=8.
Prop.: Let S and S’ be strict supported classes of a logic program P
that has a finite Herbrand base. Then, S#S’iff S n 8’ = {}.

Characterizing Attractors

Theorem (Inoue & Sakama, 2012): S is an attractor of a Boolean
network N iff S is a strict supported class of rt(N).

Proposition: An interpretation / is a supported model of a logic
program P iff {I} is a supported class of P.

Corollary: {/} is a point attractor of a Boolean network N iff / is a
supported model of (N).

Supported Classes = Attractors

p < —q.
qg < —p.
r < q.
* There are 3 strict supported classes of P;:

S1 = {{p}}; 52 = {{ql r}}l 53 = {{p/ q}l {r}}
* S,andS§, are the supported models of P, (point attractors).

(o

Qp.rP Ca>
Bap >

Repressilator (Elowitz & Leibler, Nature 403, 2000)

7(N):
p(t+1) = q(t) p < —q.
qt+1) = r(t) g < —r.
@ r(t+1) = p(t) r < —p.

* 11(N) has no supported model, but has 2 supported classes, which
correspond to cycle attractors with period 2 and 6.

505 <D 5D
0

(010>

Learning Dynamics of Systems

Learning action theories in ILP

— Event calculus: Moyle & Muggleton (1997), Moyle (2003)
— Logic programs: with situation calculus: Otero (2003, 2005)
— Action languages: Inoue et al. (2005), Tran & Baral (2009)
— Probabilistic logic programs: Corapi et al. (2011)
Relational reinforcement learning

— Logic programs: Dzeroski et al. (2001)

Abductive action learning

— Abductive event calculus: Eshghi (1988), Shanahan (2000)
Active learning of action models

— STRIPS-like: Rodrigues et al. (2011)

These works suppose applications to robotics and bioinformatics.

However, it is hard to infer rules of systems dynamics due to
presence of positive and negative feedbacks.

LFIT: Learning from Interpretation Transitions
(Inoue, Ribeiro & Sakama, Machine Learning, 2013)

 Herbrand interpretation /: a state of the world

* Logic program P: a state transition system, which maps an
Herbrand interpretation into another interpretation (Blair et al.,
1995—1997; Inoue, 2011; Inoue & Sakama, 2012)

* Next state T,(/): where T, is the immediate consequence operator
(T, operator).
 We propose a new learning setting in ILP:
— Given: a set of pairs of Herbrand interpretations (/,J) such that
J=T,(l),
— Induce a program P.
e C.f. learning from interpretations (LFI)
— Given: a set S of Herbrand interpretations,

— Induce a program P whose models are exactly S.

LFIT Applied to Dynamic Systems

Learning rules of dynamic systems

— Cellular Automata (CAs): mathematical model of complex
adaptive systems (Conway, Wolfram)

— Boolean Networks (BNs): logical model of gene regulation
networks (Kauffman)

CAs and BNs can be characterized as logic programs, and T,
operator captures their synchronous update (Inoue 2011).

A learned program P is a normal logic program (NLP) in this case.

Learning NLPs has been considered in ILP, but most approaches
take the setting of learning from entailment.

Learning NLPs under the supported model semantics.

LFIT Applied to Genetic Networks

Given an Herbrand interpretation /, which corresponds to a gene
activity profile (GAP) with gene disruptions for false atoms in /
and gene overexpressions for true atoms in /, the interactions
between genes are experimentally analyzed by observing a GAP J
such thatJ =T, (/) holds after a time step has passed.

LFIT of an NLP P corresponds to inferring a set of gene regulation
rules for those experiments of 1-step GAP transitions in a BN.

Any trajectory from a GAP in a BN reaches an attractor, which is
either a fixed point or a periodic oscillation.

Given a set of trajectories reaching to attractors of a BN, we can
also infer an NLP that realizes these trajectories.

Subsumption, least generalization

For two rules R,, R, with the same head, R, subsumes R, if there
is a substitution 0 s.t. b*(R;)0 & b*(R,) and b=(R,)0 & b7 (R,).

A rule R is the least (general) generalization (lg) of R, and R,,
written as R = Ig(R,R,), if R subsumes both R, and R, and is
subsumed by any rule that subsumes both R, and R,.

* The lg of two atoms p(s,,..., s,) and q(s,..., s,,) is undefined if p
z q; and is p(lg(s,,ty), ..., lg(s,,t.)) if p=q.

* The lg of two rules Ig(R,R,) is then written as:

g(h(R),hR)) « /N LK) A /AN =lgLK).

Leb*(R,), Keb* (R,) Leb™(R,), Keb™(R,)

LF1T: Learning from 1-Step Transitions

* Input: £ € 2B x 2B: (positive) examples/observations,
P : an (initial) NLP;
* Output: NLP P s.t. J=T,(/) holdsforany(/, J) € E

If E= @, then output P and stop;
Pick (I, J) € E; put E:=E¥{(/,))};
Foreach A € J, let

Rui=A « N B AN N .cpyC;

1. If R',is not subsumed by any rule in B, then P:=P U {R',}
and simplify P by generalizing some rules in P and removing
all clauses subsumed by them;

2. Returnto 1.

Resolution as Generalization

* (naive/ground resolution) Let R, and R, be two ground rules,
and / be a literal such that h(R,) = h(R,), | € b(R,) and I € b(R,).
If (b(R,) ¥ {I'}) S (b(R,) ¥ {/}) then the ground resolution of R, and
R, (upon /) is defined as

res(RyRy) = hiR) < I\ i< wiayun K
In particular, if (b(R,) ¥ {/}) = (b(R,) ¥ {/}) then the ground
resolution is called the naive resolution of R1 and R2 (upon).
« Example. R,=(p < gAr),R,=(p & —gAr), Ry =(p &7q):
res(R,R,) =res(R,R;) = (p & r).

* Proposition. The naive resolution of R, and R, is the least
generalization of them, e.g., Ig(R,R,) = res(R,,R,).

LF1T (naive resolution) [r,:=ac A ,cBA A o]

t@’a
GO—GTS
m“ﬂn-

qr->pr a p<"pAgAr
Rar. r<—pAgAr 2 1,2
pr->q ReT, g<«<pA\—gAr 3 1,2,3
q->pr RY, p<«<—"pAgA\—-r 4
res(4,1) p < —pAg 5 2,3,5 +1,4
R9, r<—pAgA —r 6
res(6,2) r<——pAgqg 7 3,5,7 +2,6
par->pq Rear p<pAgAr 8
res(8,1) p<—qgAr 9 3,5,7,9 +8
Rear g<«<pANgAr 10
res(10,3) g<«<pAr 11 5,7,9,11 +3,10

Cont. (naive resolution) [r,:=a< A ,.BA A .cp,—C]

m-m_n--

pa—>p Pq p<pAgA—r
res(12,5) p <q/ —r 13 5,7,9,11,13 +12
res(13,9) p < q 14 7,11,14 +5,9,13
6 p—>E
7 E>r Re, r<—pA—-gA—r 15
res(15,6) r < —p A\ —r 16 7,11,14,16 +15
8 r->r R, r<—pA—gAr 17
res(17,15) r < —p A\ g 18 7,11,14,16,18 +17
res(18,7) r < —p 19 11,14,19 +7,16,18
p < q. p(t+l) < q(t).
g« pAr. q(t+1) < p(t) A r(t).
r < —p. r(t+1) < —p(t).

propositional program first-order program

LF1T (ground resolution) [r,:=a< A ,.8A

t@’a
GO—GTS
m-m_ﬂ—

/\ ce B¥/_'C]

qr->pr a —~ 7 pAgATr
Rar. r<—ﬁp/\q/\r 2 1,2
pr->q ReT, g<«<pA\—gAr 3 1,2,3
q->pr RY, p<«< " pAgA —r 4
res(4,1) p < pAg 5 2,3,5
RY. r<—pAgA —r 6
res(6,2) r<—pAg 7 3,5,7
par->pq Rear p<pAgAr 8
res(8,5) p<—qgAr 9 3,5,7,9
Rear g<pAgAr 10
res(10,3) g<pAr 11 5,7,9,11

Cont. (ground resolution) [r,=ac A ,c8A A cpu—C]
m-m_ﬂ-

pg->p Pq p<—pAgA\—r
res(12,5) p g —r 13 5,7,9,11,13
res(13,9) p < q 14 7,11,14
6 p—>E
7 E>r RE, r<—pA—gA—r 15
res(15,7) r< —pA —r 16 7,11,14,16
8 r-r R, r<—pA—gAr 17
res(17,7) r < —p A g 18 7,11,14,16,18
res(18,16) r < —p 19 11,14,19
p < q. p(t+1) <« q(t).
g<«< pAr. q(t+1) <« p(t) A r(t).
r < —p. r(t+1) < —p(t).

propositional program first-order program

Worst-Case Complexity

* Theorem. Using naive resolution, the memory use of the
LF1T algorithm is bounded by O(n=3"), and the time
complexity of learning is bounded by O(n?=9"), where n =
|B|. On the other hand, with ground resolution, the memory
use is bounded by O(2"), which is the maximum size of P,
and the time complexity is bounded by O(4").

* Corollary. Given the set E of complete state transitions,
which has the size O(2"), the complexity of LF1T(E, &) with
ground resolution is bounded by O(| E|?). On the other hand,
the worst-case complexity of learning with naive resolution
is O(n%= | E|%~).

LFBA: Learning from Basins of Attraction

kbW e

Input: £ < 22°%: A set of orbits of interpretations (*)

Output: NLP P s.t. for VJ € Z, any | €] belongs to the
basin of attraction of some attractor of P contained in J

* Assumption: Each J contains the interpretations belonging to the orbit
of some I, €] wrt T,, and that J constitutes a sequence l, > I, > ... >
1 =>dg=> ...2>J_1>Jy~> .., where |I|=k+/land {J,, ..., J_;}is an
attractor.

2 orbits I, J € E reach the same attractoriff I n J=0 .

Put P := ;

If £ = @ then output P and stop;

Pick J € E, and put E:= E ¥ {]};

Put E:={(l,J) | I,J € 1, Jis the next state of /};
P := LF1T(E, P); Return to 2.

LFBA: Example

GG T)
Input: £ = {J, L}

L:qgr>pr> q>pr-> qg-.. @
L:pgr>pg—> p>e>r—>r—>..

LFIT(E,, @, ©) ={3,5,7};
LF1T(E; {3,5,7}) = {11,14,19}; (@ @

In general, identification of an exact NLP using LF1T may
require 2!Bl examples, while | E| in LFBA is bounded by c6,

where 6 is the number of attractors.

Learning Boolean Networks

 Benchmarks of Boolean networks are taken from (Dubrova and
Teslenko, 2011).

« All possible 1-step state transitions of N from all 2!8l possible
initial states /Ys are computed from the benchmarks by firstly
computing all stable models of T(N) U [° using the answer set
solver clasp, then by running LF1T with these state transitions.

Environment: Intel Core 17 (3610QM, 2.3GHz). Time limit: 1 hour.
Boosting is effective to reduce the size/number of rules.

Table 3 Learning time of LF1T for Boolean networks up to 15 nodes

Name # nodes | # X length of attractor | #rules (org./LFIT) | Naive | Ground
Arabidopsis thalania 15 10 x 1 28 /241 T.O. 13.825s
Budding yeast 12 7 x1 54754 omOl1s | 0.820s
Fission yeast 10 13 x 1 23724 5.208s 0.068s
Mammalian cell 10 1x1, 1x7 22122 5.7568 0,076s

Cellular Automata (CA)

A CA consists of a regular grid of cells.
A cell has a finite number of possible states.

The state of each cell changes synchronously in discrete time steps
according to local and identical transition rules.

The state of a cell in the next time step is determined by its current
state and the states of its surrounding cells (neighborhood).

2-state CA is regarded as an instance of Boolean networks.

CA is a model of emergence and self-organization, which are two
important features of the nature (the real life) as a complex system.

1-dimensional 2-state CA can simulate Turing Machine (Wolfram).

Multi-state CA: Disease Spreading Model—0 (healthy), 1 (infected),
values in between (gradually more ill)

Wolfram’s Rule 110

current pattern | 119 | 110 | 101 | 100 | 011 | 010 | 001 | 000

new state for
center cell

c(x,t+1) < c(x-1,t) A c(x,t) A —c(x+1,t).
c(x,t+1) < c(x-1,t) A —c(x,t) A c(x+1,t).
c(x,t+1) < —c(x-1,t) A c(x,t) A c(x+1,t).
c(x,t+1) < —c(x-1,t) A c(x,t) A —c(x+1,t).
c(x,t+1) <« —c(x-1,t) A —c(x,t) A c(x+1,t).

O |0 | N]J]oO ||l BB]|JWIN]|FL|O|~

Rule 110 is known to be Turing-complete.
The logic program is acyclic (Apt & Bezem, 1990).

Incorporating Background Theories

* Torus world: length 4
* (0, t) « c(4,t).

* ¢(5,t) « c(1,t).

0

c(3) !
- c(2), c(3) 2
- c(1), c(3) p
- c(1), c(4)) attractor c
- c(1), () (3) > .. 6

learning rules: 0->1(4), 122 (2), 2->3 (2).
learning positive rules: (2), (2), (1).

Incorporating Inductive Bias

e Bias |: The body of each rule exactly contains 3 neighbor literals.

e Bias ll: The rules are universal for every time step and any position.

* Biases | and Il imply that anti-instantiation (Al) can be applied
immediately instead of least generalization.

mm—m_n-

001050110 c(2) < —c(1) A —c(2) A c(3)
AI(1) c(x) < —c(x-1) A —c(x) A 2 2
c(x+1)

R3, c(3) < —¢c(2) A c(3) A —c(4) 3

Al(3) c(x) < —c(x-1) A c(x) A 4 2,4
—c(x+1)

2 01101110 R2, c(1) < —c(0) A —c(1) Ac(2) 5

R?3, c(2) < —c(1) A c(2) A c(3) 6

Al(6) c(x) < —c(x-1) A c(x) A c(x+1) 7
res(7,2) c(x) < —c(x-1) A c(x+1) 8 4,8
res(7,4) c(x) < —c(x-1) A c(x) 9 8,9

Incorporating Inductive Bias (Cont.)

mm—m_n-

0110->1110 c(3) < c(2) A ¢(3) A —c(4) 10
AI(10) c(x) < c(x-1) A c(x) A —c(x+1) 11
res(11,9) c(x) <« c(x) A —c(x+1) 12 8,9,12
3 111051011 ROL, c(1) « —c(0) A c(1) A ¢(2) 13
R34, c(4) < c(3) A —c(4) A c(5) 14
Al(14) c(x) < c(x-1) A —c(x) A c(x+1) 15
res(15,8) c(x) < —c(x) A c(x+1) 16 8,9,12,16

o c(x,t+1) < —c(x-1,t) A c(x+1,t). (8)

o c(x,t+1) <« —c(x-1,t) A c(x,t). (9)
o c(x,t+1) < c(x,t) A —c(x+1,t). (12)
o c(x,t+1) <« —c(x,t) A c(x+1,t). (16)

These are simpler than the original 5 rules, but still have one redundant rule.

Conclusion & Ongoing Work

e Oscillating behavior can be observed in any deterministic operator on the
Herbrand base. The attractors of synchronous Boolean networks are
completely characterized by the supported class semantics of NLPs.

* Learning complex networks becomes more and more important. We tackled
the induction problem of such dynamic systems in terms of NLP learning from
synchronous state transitions.

— Given any state transition diagram, which is either complete or partial, we can
learn an NLP that exactly captures the system dynamics.

— Learning is performed only from positive examples, and produces NLPs that consist
only of rules to make literals true.

— Generalization on state transition rules is done by resolution, in which each rule
can be replaced by a general rule. An output NLP is as minimal as possible wrt the
size of each rule, but may contain redundant rules.

A more efficient construction in the bottom-up algorithm with BDD (ILP 2013).

 More complex schemes such as asynchronous and probabilistic updates do
not obey transition by the T, operator.

Reference

Katsumi Inoue. Logic Programming for Boolean Networks. In:
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (1JCAI-11), pp.924-930, AAAI Press, 2011.

Katsumi Inoue and Chiaki Sakama. Oscillating Behavior of Logic
Programs. In: Correct Reasoning—Essays on Logic-Based Al in Honour
of Vladimir Lifschitz, LNAI, Vol.7625, pp.345-362, Springer, 2012.

Chiaki Sakama and Katsumi Inoue. Abduction, Unpredictability and
Garden of Eden. Logic Journal of the IGPL, to appear, 2013.

Katsumi Inoue, Tony Ribeiro and Chiaki Sakama. Learning from
Interpretation Transition. Machine Learning, to appear, 2013.

Tony Ribeiro, Katsumi Inoue and Chiaki Sakama. A BDD-Based
Algorithm for Learning from Interpretation Transition. In: Proceedings
of ILP 2013, LNAI, Springer, to appear, 2013.

http://ijcai.org/papers11/Papers/IJCAI11-160.pdf
http://dx.doi.org/10.1007/978-3-642-30743-0_23
http://dx.doi.org/10.1007/978-3-642-30743-0_23
http://dx.doi.org/10.1093/jigpal/jzt015
http://dx.doi.org/10.1093/jigpal/jzt015
http://dx.doi.org/10.1007/s10994-013-5353-8
http://dx.doi.org/10.1007/s10994-013-5353-8

