
Inference of Dynamic Boolean Networks
動的ネットワークの論理モデルに関する推論と学習

Katsumi Inoue

井上 克巳
National Institute of Informatics, Japan

国立情報学研究所

CSPSAT2-ERATO Minato Projects Joint Seminar on Theory,
Implementation, and Applications of Logic and Inference

論理と推論の理論, 実装, 応用に関する合同セミナー
Hokkaido University, Sapporo, July 25th, 2013

Boolean Network

State transition table

p

Time t Time t+1

p q r

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
1 0 1
1 0 1
0 0 1
0
1 0 0
1 1 0

Input Output

q r

1 1

 Discrete model of genetic networks and adaptive systems

 N = (V, F)

• V = {v1, …, vn} : finite set of nodes ⇔ gene

• F = {f1, …., fn} : Boolean functions ⇔ gene regulation rule

Boolean network

)()1(

)()()1(

)()1(

tptr

trtptq

tqtp







p

q r

Attractors

• Periodic sequence of states

– 011 → 101 → 010 →
101 → 010 → …

– 111 → 110 → 100 →
000 → 001 → 001 → …

• Different attractors ⇔
Different cell types

• In Synchronous BN, any
node reaches one attractor.

State transition diagram

000

010

001

101 100

110

011 111)()1(

)()()1(

)()1(

tptr

trtptq

tqtp







Normal Logic Programs

• A normal logic program (NLP) P is a set of rules:

H A1  …  Am  B1  …  Bn (m,n  0)

 where H, Ai and Bj are atoms and  is (default) negation.

• P is definite if n = 0 for every rule in P.

• ground(P) : the set of ground instances of all rules in P.

• The Herbrand base HP is the set of ground atoms from language(P).

• An (Herbrand) interpretation of an NLP P is a subset of HP.

• An interpretation I satisfies a ground rule of the form:

H A1  …  Am  B1  …  Bn

 iff i. Ai  I and j. Bj  I imply that H  I.

• I is an (Herbrand) model of P if I satisfies all rules in ground(P).

TP operator

• TP (I) := { H | H  L1 ... Ln  ground(P), I ╞ L1 ... Ln }.

• When P is a definite program, I ╞ A1 ... Am iff i. Ai  I.

 In this case, TP operator is monotone, and the sequence

I0 = {}, In+1 = TP(In) (n=0,...)

 reaches the least fixpoint of TP, denoted as I* = TP↑ω: I* = TP (I*).
TP↑ω is the least model of P (van Emden & Kowalski, 1976).

• When P is a normal program,

 I ╞ A1 … Am  B1 … Bn iff i. Ai  I and j. Bj I.

 In this case, TP is nonmonotone (Apt, Blair & Walker, 1988).

• The orbit of I wrt P (Blair et al., 1997) is TP
k(I)k=0,1,2,…,

 where TP
0(I) = I, TP

k+1(I) = TP(TP
k(I)) for k = 0, 1, 2, …. .

TP operator, supportedness, completion

• An interpretation I is supported (Apt, Blair & Walker, 1988)
if A I. (A A1…AmB1 …Bn)  ground(P)
such that i. Ai  I and j. Bj  I.

• Prop. An interpretation I is a model of P iff TP (I)  I .

• Prop. I is supported iff I  TP (I) .

• Cor. I is a supported model of P iff I = TP (I) .

• Prop. I is a model of Comp(P) iff I = TP (I) , where
Comp(P) is Clark’s completion of P .

• Cor. I is a supported model of P iff I is a model of
Comp(P).

TP operator for NLPs

• p  q.

• p  r.

• r  p  q.

1. {}

2. {p}

3. {p,r}

4. {r}

5. {}

6. repeat 2—5

• TP is nonmonotone.

• No fixpoint is reached in general.

• No supported model exists here.

Translating Synchronous BNs into NLPs
(Inoue, IJCAI 2011)

Given a BN N = (V, F), transform each fi F to DNF:

VC  V : constant nodes (j=0)

• For any state v(t)  {0,1}n, put It = { vi V | vi(t) = 1 }.

• It+1 = Tπ(N)(I
t). The orbit of It wrt Tπ(N) is precisely the

trajectory of N starting from v(t).

)()()()()(

),()(

,,1,,,,1,,,

,
1

tvtvtvtvtB

tBtf

jjj

j

njimjimjijiji

ji

l

j
i












}.|)({

}1,\|)({)(,

Ciii

iCijii

Vvvv

ljVVvBvN





 

Boolean Network (Example)

.

.

.

pr

rpq

qp







 Starting from v(0)=(0,1,1), the
orbit of I0 wrt π(N) becomes:

1. {q, r}

2. {p, r}

3. {q}

4. {p, r}

5. repeat 3—2

 Starting from v(0)=(0,0,0), the
orbit of I0 wrt π(N) becomes:

1. {}

2. {r}

3. {r}

4. fixpoint

p

q r

Characterizing Point Attractors

• Theorem (Inoue, 2011): {I} is a point attractor of N iff I is a
supported model of π(N).

• The supported models of an NLP are exactly the models of its
Clark’s completion:

 c.f. (Tamura & Akutsu, 2009).

)())((,
1\

ii
Cc

ji

l

j
i

CVv

ccBvNComp
i

i

i











 





Supported Classes
(Inoue & Sakama, Lifschitz Festschrift, 2012)

• A supported class of a logic program P is defined as a nonempty
set S of Herbrand interpretations satisfying the fixpoint equation:

S = { TP(I) | I ∈ S }.

• A supported class S of P is strict if no proper subset of S is a
supported class of P.

• Theorem: A non-empty set S of Herbrand interpretations is a
strict supported class of P iff S = {TP

k(I) | k∈ω} for every I ∈ S.

• Theorem: A finite set S of Herbrand interpretations of P is a strict
supported class of P iff there is a directed cycle I1 → I2 → ・ ・ ・ →
Ik → I1 (k ≥ 1) in the state transition graph induced by TP such that
{I1, I2, . . . , Ik} = S.

• Prop.: Let S and S’ be strict supported classes of a logic program P
that has a finite Herbrand base. Then, S ≠ S’ iff S ∩ S’ = {}.

Characterizing Attractors

• Theorem (Inoue & Sakama, 2012): S is an attractor of a Boolean
network N iff S is a strict supported class of π(N).

• Proposition: An interpretation I is a supported model of a logic
program P iff {I} is a supported class of P.

• Corollary: {I} is a point attractor of a Boolean network N iff I is a
supported model of π(N).

Supported Classes = Attractors

• P1:

p  ￢q.

q ￢p.

r  q.

• There are 3 strict supported classes of P1:

S1 = {{p}}, S2 = {{q, r}}, S3 = {{p, q}, {r}}.

• S1 and S2 are the supported models of P1 (point attractors).

{r} {p,q}

{p,q,r} {}
{p,r}

{p}

{q}

{q,r}

Repressilator (Elowitz & Leibler, Nature 403, 2000)

• π(N) has no supported model, but has 2 supported classes, which
correspond to cycle attractors with period 2 and 6.

.

.

.

:)(

pr

rq

qp

N









)()1(

)()1(

)()1(

tptr

trtq

tqtp






q

p r

111 000
100

110

001

011

101

010

Learning Dynamics of Systems
• Learning action theories in ILP

– Event calculus: Moyle & Muggleton (1997), Moyle (2003)
– Logic programs: with situation calculus: Otero (2003, 2005)
– Action languages: Inoue et al. (2005), Tran & Baral (2009)
– Probabilistic logic programs: Corapi et al. (2011)

• Relational reinforcement learning
– Logic programs: Džeroski et al. (2001)

• Abductive action learning
– Abductive event calculus: Eshghi (1988), Shanahan (2000)

• Active learning of action models
– STRIPS-like: Rodrigues et al. (2011)

• These works suppose applications to robotics and bioinformatics.

• However, it is hard to infer rules of systems dynamics due to
presence of positive and negative feedbacks.

LFIT: Learning from Interpretation Transitions
 (Inoue, Ribeiro & Sakama, Machine Learning, 2013)

• Herbrand interpretation I: a state of the world

• Logic program P: a state transition system, which maps an
Herbrand interpretation into another interpretation (Blair et al.,
1995—1997; Inoue, 2011; Inoue & Sakama, 2012)

• Next state TP(I): where TP is the immediate consequence operator
(TP operator).

• We propose a new learning setting in ILP:
– Given: a set of pairs of Herbrand interpretations (I,J) such that

J = TP(I),
– Induce a program P.

• C.f. learning from interpretations (LFI)
– Given: a set S of Herbrand interpretations,
– Induce a program P whose models are exactly S.

LFIT Applied to Dynamic Systems

• Learning rules of dynamic systems
– Cellular Automata (CAs): mathematical model of complex

adaptive systems (Conway, Wolfram)
– Boolean Networks (BNs): logical model of gene regulation

networks (Kauffman)

• CAs and BNs can be characterized as logic programs, and TP
operator captures their synchronous update (Inoue 2011).

• A learned program P is a normal logic program (NLP) in this case.

• Learning NLPs has been considered in ILP, but most approaches
take the setting of learning from entailment.

• Learning NLPs under the supported model semantics.

LFIT Applied to Genetic Networks

• Given an Herbrand interpretation I, which corresponds to a gene
activity profile (GAP) with gene disruptions for false atoms in I
and gene overexpressions for true atoms in I, the interactions
between genes are experimentally analyzed by observing a GAP J
such that J = TP (I) holds after a time step has passed.

• LFIT of an NLP P corresponds to inferring a set of gene regulation
rules for those experiments of 1-step GAP transitions in a BN.

• Any trajectory from a GAP in a BN reaches an attractor, which is
either a fixed point or a periodic oscillation.

• Given a set of trajectories reaching to attractors of a BN, we can
also infer an NLP that realizes these trajectories.

Subsumption, least generalization

• For two rules R1, R2 with the same head, R1 subsumes R2 if there
is a substitution θ s.t. b+(R1)θ ⊆ b+(R2) and b−(R1)θ ⊆ b−(R2).

• A rule R is the least (general) generalization (lg) of R1 and R2,
written as R = lg(R1,R2), if R subsumes both R1 and R2 and is
subsumed by any rule that subsumes both R1 and R2.

• The lg of two atoms p(s1,… , sn) and q(s1,… , sn) is undefined if p
≠ q; and is p(lg(s1,t1), …, lg(sn,tn)) if p = q.

• The lg of two rules lg(R1,R2) is then written as:

).()())(),((

2121 (),((),(

21 KL,lgKL,lgRh Rhlg
)RbKRbL)RbKRbL


 

 

LF1T: Learning from 1-Step Transitions

• Input: E ⊆ 2B × 2B: (positive) examples/observations,

 P : an (initial) NLP;

• Output: NLP P s.t. J = TP(I) holds for any (I, J) ∈ E

1. If E = ∅ , then output P and stop;

2. Pick (I, J) ∈ E; put E := E ¥ {(I, J)};

3. For each A ∈ J, let

RI
A := A  ∧ B∈I B ∧ ∧ C∈B¥I￢C ;

1. If RI
A is not subsumed by any rule in P, then P := P ∪ {RI

A}
and simplify P by generalizing some rules in P and removing
all clauses subsumed by them;

2. Return to 1.

Resolution as Generalization

• (naïve/ground resolution) Let R1 and R2 be two ground rules,
and l be a literal such that h(R1) = h(R2), l ∈ b(R1) and Ī ∈ b(R2).
If (b(R2) ¥ {Ī }) ⊆ (b(R1) ¥ {l}) then the ground resolution of R1 and
R2 (upon l) is defined as

 res(R1,R2) = h(R1) ← ∧K ∈ b(R1)¥{l} K
 In particular, if (b(R2) ¥ {Ī }) = (b(R1) ¥ {l}) then the ground

resolution is called the naïve resolution of R1 and R2 (upon l).

• Example. R1 = (p ← q∧r), R2 = (p ← ￢q∧r), R3 = (p ←￢q):

 res(R1,R2) = res(R1,R3) = (p ← r).

• Proposition. The naïve resolution of R1 and R2 is the least
generalization of them, e.g., lg(R1,R2) = res(R1,R2).

LF1T (naïve resolution) [RI
A := A  ∧ B∈I B ∧ ∧ C∈B¥I￢C]

Step I → J Operation Rule ID P Pold

1 qr→pr Rqr
p p ￢p ∧ q ∧ r 1 1 {}

Rqr
r r ￢p ∧ q ∧ r 2 1,2

2 pr→q Rpr
q q p ∧ ￢q ∧ r 3 1,2,3

3 q→pr Rq
p p ￢p ∧ q ∧ ￢r 4

res(4,1) p ￢p ∧ q 5 2,3,5 +1,4

Rq
r r ￢p ∧ q ∧ ￢r 6

res(6,2) r ￢p ∧ q 7 3,5,7 +2,6

4 pqr→pq Rpqr
p p p ∧ q ∧ r 8

res(8,1) p q ∧ r 9 3,5,7,9 +8

Rpqr
q q p ∧ q ∧ r 10

res(10,3) q p ∧ r 11 5,7,9,11 +3,10

 pqr pq p ε r

 qr pr q

Cont. (naïve resolution) [RI
A := A  ∧ B∈I B ∧ ∧ C∈B¥I￢C]

Step I → J Operation Rule ID P Pold

5 pq→p Rpq
p p p ∧ q ∧ ￢r 12

res(12,5) p q ∧ ￢r 13 5,7,9,11,13 +12

res(13,9) p q 14 7,11,14 +5,9,13

6 p→ε

7 ε→r Rε
r r ￢p ∧ ￢q ∧ ￢r 15

res(15,6) r ￢p ∧ ￢r 16 7,11,14,16 +15

8 r→r Rr
r r ￢p ∧ ￢q ∧ r 17

res(17,15) r ￢p ∧ ￢q 18 7,11,14,16,18 +17

res(18,7) r ￢p 19 11,14,19 +7,16,18

p  q.

q p ∧ r.
r  ￢p.

propositional program

p(t+1)  q(t).

q(t+1) p(t) ∧ r(t).
r(t+1)  ￢p(t).

first-order program

LF1T (ground resolution) [RI
A := A  ∧ B∈I B ∧ ∧ C∈B¥I￢C]

Step I → J Operation Rule ID P

1 qr→pr Rqr
p p ￢p ∧ q ∧ r 1 1

Rqr
r r ￢p ∧ q ∧ r 2 1,2

2 pr→q Rpr
q q p ∧ ￢q ∧ r 3 1,2,3

3 q→pr Rq
p p ￢p ∧ q ∧ ￢r 4

res(4,1) p ￢p ∧ q 5 2,3,5

Rq
r r ￢p ∧ q ∧ ￢r 6

res(6,2) r ￢p ∧ q 7 3,5,7

4 pqr→pq Rpqr
p p p ∧ q ∧ r 8

res(8,5) p q ∧ r 9 3,5,7,9

Rpqr
q q p ∧ q ∧ r 10

res(10,3) q p ∧ r 11 5,7,9,11

 pqr pq p ε r

 qr pr q

Cont. (ground resolution) [RI
A := A  ∧ B∈I B ∧ ∧ C∈B¥I￢C]

Step I → J Operation Rule ID P

5 pq→p Rpq
p p p ∧ q ∧ ￢r 12

res(12,5) p q ∧ ￢r 13 5,7,9,11,13

res(13,9) p q 14 7,11,14

6 p→ε

7 ε→r Rε
r r ￢p ∧ ￢q ∧ ￢r 15

res(15,7) r ￢p ∧ ￢r 16 7,11,14,16

8 r→r Rr
r r ￢p ∧ ￢q ∧ r 17

res(17,7) r ￢p ∧ ￢q 18 7,11,14,16,18

res(18,16) r ￢p 19 11,14,19

p  q.

q p ∧ r.
r  ￢p.

propositional program

p(t+1)  q(t).

q(t+1) p(t) ∧ r(t).
r(t+1)  ￢p(t).

first-order program

Worst-Case Complexity

• Theorem. Using naïve resolution, the memory use of the
LF1T algorithm is bounded by O(n・3n), and the time
complexity of learning is bounded by O(n2・9n), where n =
|B|. On the other hand, with ground resolution, the memory
use is bounded by O(2n), which is the maximum size of P,
and the time complexity is bounded by O(4n).

• Corollary. Given the set E of complete state transitions,
which has the size O(2n), the complexity of LF1T(E,∅) with
ground resolution is bounded by O(|E|2). On the other hand,
the worst-case complexity of learning with naïve resolution
is O(n2・|E|4.5).

LFBA: Learning from Basins of Attraction

• Input: E ⊆ 22B: A set of orbits of interpretations (*)

• Output: NLP P s.t. for ∀I ∈ E, any I ∈ I belongs to the
basin of attraction of some attractor of P contained in I

• * Assumption: Each I contains the interpretations belonging to the orbit
of some I0 ∈I wrt TP, and that I constitutes a sequence I0 → I1 → … →
Ik−1 → J0 → … → Jl−1 → J0 → … , where |I|= k + l and {J0, … , Jl−1} is an
attractor.

• 2 orbits I,J ∈ E reach the same attractor iff I ∩ J = ∅ .

1. Put P := ∅;

2. If E = ∅ then output P and stop;

3. Pick I ∈ E, and put E := E ¥ {I};

4. Put E := {(I, J) | I, J ∈ I, J is the next state of I};

5. P := LF1T(E, P); Return to 2.

LFBA: Example

 pqr pq p ε r

 qr pr q

Input: E = {I1, I2}
I1 : qr → pr → q → pr → q → …
I2 : pqr → pq → p → ε → r → r → …

LF1T(E1, ∅, ∅) = {3,5,7};
LF1T(E2, {3,5,7}) = {11,14,19};

In general, identification of an exact NLP using LF1T may
require 2|B| examples, while |E| in LFBA is bounded by cδ,
where δ is the number of attractors.

p

q r

Learning Boolean Networks

• Benchmarks of Boolean networks are taken from (Dubrova and
Teslenko, 2011).

• All possible 1-step state transitions of N from all 2|B| possible
initial states I0’s are computed from the benchmarks by firstly
computing all stable models of τ(N) ∪ I0 using the answer set
solver clasp, then by running LF1T with these state transitions.

• Environment: Intel Core I7 (3610QM, 2.3GHz). Time limit: 1 hour.

• Boosting is effective to reduce the size/number of rules.

Cellular Automata (CA)

• A CA consists of a regular grid of cells.

• A cell has a finite number of possible states.

• The state of each cell changes synchronously in discrete time steps
according to local and identical transition rules.

• The state of a cell in the next time step is determined by its current
state and the states of its surrounding cells (neighborhood).

• 2-state CA is regarded as an instance of Boolean networks.

• CA is a model of emergence and self-organization, which are two
important features of the nature (the real life) as a complex system.

• 1-dimensional 2-state CA can simulate Turing Machine (Wolfram).

• Multi-state CA: Disease Spreading Model—0 (healthy), 1 (infected),
values in between (gradually more ill)

Wolfram’s Rule 110

current pattern 111 110 101 100 011 010 001 000

new state for
center cell

0 1 1 0 1 1 1 0

• c(x,t+1)  c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t).

• c(x,t+1)  c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t).

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ c(x+1,t).

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t).

• c(x,t+1)  ￢c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t).

• Rule 110 is known to be Turing-complete.

• The logic program is acyclic (Apt & Bezem, 1990).

t 0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

Incorporating Background Theories

• Torus world: length 4

• c(0, t) c(4, t).

• c(5, t) c(1, t).

 c(3)

→ c(2), c(3)

→ c(1), c(2), c(3)

→ c(1), c(3), c(4) attractor

→ c(1), c(2), c(3) → …

learning rules: 0→1 (4), 1→2 (2), 2→3 (2).

learning positive rules: (2), (2), (1).

t (4) 1 2 3 4 (1)

0

1

2

3

4

5

6

Incorporating Inductive Bias
• Bias I: The body of each rule exactly contains 3 neighbor literals.
• Bias II: The rules are universal for every time step and any position.
• Biases I and II imply that anti-instantiation (AI) can be applied

immediately instead of least generalization.

 Step I → J Op. Rule ID P

1 0010→0110 R3
2 c(2) ￢c(1) ∧ ￢c(2) ∧ c(3) 1

AI(1) c(x) ￢c(x-1) ∧ ￢c(x) ∧
c(x+1)

2 2

R3
3 c(3) ￢c(2) ∧ c(3) ∧ ￢c(4) 3

AI(3) c(x) ￢c(x-1) ∧ c(x) ∧
￢c(x+1)

4 2,4

2 0110→1110 R2
1 c(1) ￢c(0) ∧ ￢c(1) ∧ c(2) 5

R23
2 c(2) ￢c(1) ∧ c(2) ∧ c(3) 6

AI(6) c(x) ￢c(x-1) ∧ c(x) ∧ c(x+1) 7

res(7,2) c(x) ￢c(x-1) ∧ c(x+1) 8 4,8

res(7,4) c(x) ￢c(x-1) ∧ c(x) 9 8,9

Incorporating Inductive Bias (Cont.)

• c(x,t+1)  ￢c(x-1,t) ∧ c(x+1,t). (8)

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t). (9)

• c(x,t+1)  c(x,t) ∧ ￢c(x+1,t). (12)

• c(x,t+1)  ￢c(x,t) ∧ c(x+1,t). (16)

These are simpler than the original 5 rules, but still have one redundant rule.

Step I → J Op. Rule ID P

2 0110→1110 R23
3 c(3) c(2) ∧ c(3) ∧ ￢c(4) 10

AI(10) c(x) c(x-1) ∧ c(x) ∧ ￢c(x+1) 11

res(11,9) c(x) c(x) ∧ ￢c(x+1) 12 8,9,12

3 1110→1011 R01
1 c(1) ￢c(0) ∧ c(1) ∧ c(2) 13

R34
4 c(4) c(3) ∧ ￢c(4) ∧ c(5) 14

AI(14) c(x) c(x-1) ∧ ￢c(x) ∧ c(x+1) 15

res(15,8) c(x) ￢c(x) ∧ c(x+1) 16 8,9,12,16

Conclusion & Ongoing Work

• Oscillating behavior can be observed in any deterministic operator on the
Herbrand base. The attractors of synchronous Boolean networks are
completely characterized by the supported class semantics of NLPs.

• Learning complex networks becomes more and more important. We tackled
the induction problem of such dynamic systems in terms of NLP learning from
synchronous state transitions.

– Given any state transition diagram, which is either complete or partial, we can
learn an NLP that exactly captures the system dynamics.

– Learning is performed only from positive examples, and produces NLPs that consist
only of rules to make literals true.

– Generalization on state transition rules is done by resolution, in which each rule
can be replaced by a general rule. An output NLP is as minimal as possible wrt the
size of each rule, but may contain redundant rules.

• A more efficient construction in the bottom-up algorithm with BDD (ILP 2013).

• More complex schemes such as asynchronous and probabilistic updates do
not obey transition by the TP operator.

Reference

• Katsumi Inoue. Logic Programming for Boolean Networks. In:
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI-11), pp.924-930, AAAI Press, 2011.

• Katsumi Inoue and Chiaki Sakama. Oscillating Behavior of Logic
Programs. In: Correct Reasoning—Essays on Logic-Based AI in Honour
of Vladimir Lifschitz, LNAI, Vol.7625, pp.345-362, Springer, 2012.

• Chiaki Sakama and Katsumi Inoue. Abduction, Unpredictability and
Garden of Eden. Logic Journal of the IGPL, to appear, 2013.

• Katsumi Inoue, Tony Ribeiro and Chiaki Sakama. Learning from
Interpretation Transition. Machine Learning, to appear, 2013.

• Tony Ribeiro, Katsumi Inoue and Chiaki Sakama. A BDD-Based
Algorithm for Learning from Interpretation Transition. In: Proceedings
of ILP 2013, LNAI, Springer, to appear, 2013.

http://ijcai.org/papers11/Papers/IJCAI11-160.pdf
http://dx.doi.org/10.1007/978-3-642-30743-0_23
http://dx.doi.org/10.1007/978-3-642-30743-0_23
http://dx.doi.org/10.1093/jigpal/jzt015
http://dx.doi.org/10.1093/jigpal/jzt015
http://dx.doi.org/10.1007/s10994-013-5353-8
http://dx.doi.org/10.1007/s10994-013-5353-8

