Inference of Dynamic Boolean Networks 動的ネットワークの論理モデルに関する推論と学習

Katsumi Inoue

井上 克巳

National Institute of Informatics, Japan 国立情報学研究所

CSPSAT2-ERATO Minato Projects Joint Seminar on Theory, Implementation, and Applications of Logic and Inference 論理と推論の理論, 実装, 応用に関する合同セミナー Hokkaido University, Sapporo, July 25th, 2013

Boolean Network

Discrete model of genetic networks and adaptive systems
 N = (V, F)

- $V = \{v_1, ..., v_n\}$: finite set of nodes \Leftrightarrow gene
- $F = \{f_1, ..., f_n\}$: Boolean functions \Leftrightarrow gene regulation rule

Boolean network

$$p(t+1) = q(t)$$

$$q(t+1) = p(t) \wedge r(t)$$

$$r(t+1) = \overline{p(t)}$$

Stata	tranci	ition	tabl	
Slale	llais	ποπ	lan	e

In	put		Ou	tput	
Time t			Tim	e t+	·1
р	q	r	р	q	r
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	0

Attractors

p(t+1) = q(t) $q(t+1) = p(t) \wedge r(t)$ $r(t+1) = \overline{p(t)}$

- Periodic sequence of states
 - $\begin{array}{c} \ 011 \rightarrow 101 \rightarrow 010 \rightarrow \\ 101 \rightarrow 010 \rightarrow \dots \end{array}$
 - $\begin{array}{c} -111 \rightarrow 110 \rightarrow 100 \rightarrow \\ 000 \rightarrow 001 \rightarrow 001 \rightarrow \dots \end{array}$
- Different attractors ⇔
 Different cell types
- In Synchronous BN, any node reaches one attractor.

State transition diagram

Normal Logic Programs

• A normal logic program (NLP) P is a set of rules:

$$\mathsf{H} \leftarrow \mathsf{A}_1 \wedge \dots \wedge \mathsf{A}_m \wedge \neg \mathsf{B}_1 \wedge \dots \wedge \neg \mathsf{B}_n \quad (m, n \ge 0)$$

where H, A_i and B_i are atoms and - is (*default*) *negation*.

- P is *definite* if n = 0 for every rule in P.
- ground(P) : the set of ground instances of all rules in P.
- The Herbrand base \mathbf{H}_{P} is the set of ground atoms from language(P).
- An (*Herbrand*) *interpretation* of an NLP *P* is a subset of H_P .
- An interpretation *I satisfies* a ground rule of the form:

$$\mathsf{H} \leftarrow \mathsf{A}_1 \land \dots \land \mathsf{A}_m \land \neg \mathsf{B}_1 \land \dots \land \neg \mathsf{B}_n$$

iff $\forall i. A_i \in I$ and $\forall j. B_j \notin I$ imply that $H \in I$.

• *I* is an (*Herbrand*) *model* of *P* if *I* satisfies all rules in *ground*(*P*).

T_P operator

- $T_P(I) := \{ H \mid H \leftarrow L_1 \land ... \land L_n \in ground(P), I \models L_1 \land ... \land L_n \}.$
- When *P* is a *definite* program, $I \models A_1 \land ... \land A_m$ iff $\forall i. A_i \in I$. In this case, T_P operator is *monotone*, and the sequence $I_0 = \{\}, I_{n+1} = T_P(I_n) \ (n=0,...)$

reaches the *least fixpoint* of T_p , denoted as $I^* = T_p \uparrow \omega$: $I^* = T_p (I^*)$. $T_p \uparrow \omega$ is the *least model* of *P* (van Emden & Kowalski, 1976).

• When *P* is a *normal* program,

 $I \models A_1 \land ... \land A_m \land \neg B_1 \land ... \land \neg B_n$ iff $\forall i. A_i \in I$ and $\forall j. B_j \notin I$. In this case, T_P is nonmonotone (Apt, Blair & Walker, 1988).

• The *orbit* of *I* wrt P (Blair *et al.*, 1997) is $\langle T_P^{\ k}(I) \rangle_{k=0,1,2,...}$, where $T_P^{\ 0}(I) = I$, $T_P^{\ k+1}(I) = T_P(T_P^{\ k}(I))$ for k = 0, 1, 2,

T_P operator, supportedness, completion

- An interpretation *I* is *supported* (Apt, Blair & Walker, 1988) if $\forall A \in I. \exists (A \leftarrow A_1 \land ... \land A_m \land \neg B_1 \land ... \land \neg B_n) \in ground(P)$ such that $\forall i. A_i \in I$ and $\forall j. B_i \notin I$.
- **<u>Prop.</u>** An interpretation *I* is a model of *P* iff $T_P(I) \subseteq I$.
- **<u>Prop.</u>** *I* is supported iff $I \subseteq T_P(I)$.
- <u>Cor.</u> *I* is a supported model of *P* iff $I = T_P(I)$.
- <u>**Prop.**</u> *I* is a model of Comp(P) iff $I = T_P(I)$, where Comp(P) is Clark's completion of *P*.
- <u>Cor.</u> *I* is a supported model of *P* iff *I* is a model of *Comp(P)*.

T_P operator for NLPs

- $p \leftarrow q$.
- $p \leftarrow \neg r$.
- $r \leftarrow p \land \neg q$.

- 1. {}
- 2. {*p*}
 - 3. {*p*,*r*}
 - 4. {*r*}
 - 5. {}
 - 6. repeat 2-5
 - T_P is nonmonotone.
 - No fixpoint is reached in general.
 - No supported model exists here.

Translating Synchronous BNs into NLPs (Inoue, IJCAI 2011)

Given a BN N = (V, F), transform each $f_i \in F$ to DNF:

$$f_i(t) = \bigvee_{j=1}^{J} B_{i,j}(t),$$

$$B_{i,j}(t) = v_{i,j,1}(t) \wedge \cdots \wedge v_{i,j,m_j}(t) \wedge \neg v_{i,j,m_j+1}(t) \wedge \cdots \wedge \neg v_{i,j,n_j}(t)$$

$$V_{C} \subseteq V: \text{ constant nodes (j=0)}$$

$$\pi(N) = \{ (v_{i} \leftarrow B_{i,j}) \mid v_{i} \in V \setminus V_{C}, 1 \leq j \leq l_{i} \}$$

$$\cup \{ (v_{i} \leftarrow v_{i}) \mid v_{i} \in V_{C} \}.$$

- For any state $\mathbf{v}(t) \in \{0,1\}^n$, put $I^t = \{v_i \in V \mid v_i(t) = 1\}$.
- $I^{t+1} = T_{\pi(N)}(I^t)$. The orbit of I^t wrt $T_{\pi(N)}$ is precisely the trajectory of N starting from $\mathbf{v}(t)$.

Boolean Network (Example)

$$p \leftarrow q.$$
$$q \leftarrow p \land r$$

 $r \leftarrow \neg p$.

- Starting from v(0)=(0,1,1), the orbit of I₀ wrt π(N) becomes:
- 1. $\{q, r\}$
- 2. {**p**, **r**}
- 3. {**q**}
- 4. {**p**, **r**}
- 5. repeat 3-2
 - Starting from $\mathbf{v}(0)=(0,0,0)$, the orbit of I_0 wrt $\pi(N)$ becomes:
- 1. {}
- 2. {**r**}
- 3. {**r**}
- 4. fixpoint

Characterizing Point Attractors

- <u>Theorem</u> (Inoue, 2011): {/} is a point attractor of *N* iff / is a supported model of $\pi(N)$.
- The supported models of an NLP are exactly the models of its Clark's completion:

$$Comp(\pi(N)) = \bigwedge_{v_i \in V \setminus C} \left(v_i \leftrightarrow \bigvee_{j=1}^{l_i} B_{i,j} \right) \wedge \underbrace{(c_i \leftrightarrow c_i)}_{c_i \in C}$$

c.f. (Tamura & Akutsu, 2009).

Supported Classes

(Inoue & Sakama, *Lifschitz Festschrift*, 2012)

• A **supported class** of a logic program *P* is defined as a nonempty set *S* of Herbrand interpretations satisfying the fixpoint equation:

$$\mathbf{S} = \{ T_{\rho}(I) \mid I \subseteq \mathbf{S} \}.$$

- A supported class **S** of P is **strict** if no proper subset of **S** is a supported class of P.
- <u>Theorem</u>: A non-empty set **S** of Herbrand interpretations is a strict supported class of *P* iff $S = \{T_P^k(I) \mid k \in \omega\}$ for every $I \in S$.
- <u>**Theorem</u>**: A finite set **S** of Herbrand interpretations of *P* is a strict supported class of *P* iff there is a directed cycle $I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_k \rightarrow I_1$ ($k \ge 1$) in the state transition graph induced by T_p such that $\{I_1, I_2, \ldots, I_k\} = S$.</u>
- Prop.: Let S and S' be strict supported classes of a logic program P that has a finite Herbrand base. Then, S ≠ S' iff S ∩ S' = {}.

Characterizing Attractors

- <u>Theorem</u> (Inoue & Sakama, 2012): *S* is an attractor of a Boolean network *N* iff *S* is a strict supported class of $\pi(N)$.
- <u>Proposition</u>: An interpretation *I is a supported model of a logic* program *P* iff {*I*} is a supported class of *P*.
- **Corollary:** {*I*} is a point attractor of a Boolean network *N* iff *I* is a supported model of $\pi(N)$.

Supported Classes = Attractors

• *P*₁:

• There are 3 strict supported classes of P₁:

$$S_1 = \{\{p\}\}, S_2 = \{\{q, r\}\}, S_3 = \{\{p, q\}, \{r\}\}.$$

• S_1 and S_2 are the supported models of P_1 (*point attractors*).

Repressilator (Elowitz & Leibler, Nature 403, 2000)

$$\pi(N):$$

$$p(t+1) = \overline{q(t)} \qquad p \leftarrow \neg q.$$

$$q(t+1) = \overline{r(t)} \qquad q \leftarrow \neg r.$$

$$r(t+1) = \overline{p(t)} \qquad r \leftarrow \neg p.$$

π(N) has no supported model, but has 2 supported classes, which correspond to cycle attractors with period 2 and 6.

Learning Dynamics of Systems

- Learning action theories in ILP
 - Event calculus: Moyle & Muggleton (1997), Moyle (2003)
 - Logic programs: with situation calculus: Otero (2003, 2005)
 - Action languages: Inoue *et al.* (2005), Tran & Baral (2009)
 - Probabilistic logic programs: Corapi et al. (2011)
- Relational reinforcement learning
 - Logic programs: Džeroski *et al*. (2001)
- Abductive action learning
 - Abductive event calculus: Eshghi (1988), Shanahan (2000)
- Active learning of action models
 - STRIPS-like: Rodrigues et al. (2011)
- These works suppose applications to robotics and bioinformatics.
- However, it is hard to infer *rules of systems dynamics* due to presence of positive and negative feedbacks.

LFIT: Learning from Interpretation Transitions (Inoue, Ribeiro & Sakama, *Machine Learning*, 2013)

- Herbrand interpretation I: a state of the world
- Logic program P: a state transition system, which maps an Herbrand interpretation into another interpretation (Blair et al., 1995—1997; Inoue, 2011; Inoue & Sakama, 2012)
- Next state $T_p(I)$: where T_p is the immediate consequence operator $(T_p operator)$.
- We propose a new learning setting in ILP:
 - Given: a set of pairs of Herbrand interpretations (I, J) such that $J = T_{P}(I)$,
 - Induce a program *P*.
- C.f. learning from interpretations (LFI)
 - Given: a set S of Herbrand interpretations,
 - Induce a program P whose models are exactly S.

LFIT Applied to Dynamic Systems

- Learning rules of dynamic systems
 - Cellular Automata (CAs): mathematical model of complex adaptive systems (Conway, Wolfram)
 - Boolean Networks (BNs): logical model of gene regulation networks (Kauffman)
- CAs and BNs can be characterized as logic programs, and T_p operator captures their synchronous update (Inoue 2011).
- A learned program *P* is a *normal logic program* (NLP) in this case.
- Learning NLPs has been considered in ILP, but most approaches take the setting of *learning from entailment*.
- Learning NLPs under the *supported model semantics*.

LFIT Applied to Genetic Networks

- Given an Herbrand interpretation *I*, which corresponds to a gene activity profile (GAP) with gene disruptions for false atoms in *I* and gene overexpressions for true atoms in *I*, the interactions between genes are experimentally analyzed by observing a GAP J such that $J = T_p(I)$ holds after a time step has passed.
- LFIT of an NLP *P* corresponds to inferring a set of gene regulation rules for those experiments of 1-step GAP transitions in a BN.
- Any trajectory from a GAP in a BN reaches an *attractor,* which is either a *fixed point* or a *periodic oscillation*.
- Given a set of trajectories reaching to attractors of a BN, we can also infer an NLP that realizes these trajectories.

Subsumption, least generalization

- For two rules R_1 , R_2 with the same head, R_1 subsumes R_2 if there is a substitution θ s.t. $b^+(R_1)\theta \subseteq b^+(R_2)$ and $b^-(R_1)\theta \subseteq b^-(R_2)$.
- A rule *R* is the *least (general) generalization* (*Ig*) of R_1 and R_2 , written as $R = Ig(R_1, R_2)$, if *R* subsumes both R_1 and R_2 and is subsumed by any rule that subsumes both R_1 and R_2 .
- The lg of two atoms $p(s_1, ..., s_n)$ and $q(s_1, ..., s_n)$ is undefined if $p \neq q$; and is $p(lg(s_1, t_1), ..., lg(s_n, t_n))$ if p = q.
- The lg of two rules $lg(R_1, R_2)$ is then written as:

$$lg(h(R_1), h(R_2)) \leftarrow \bigwedge_{L \in b^+(R_1), K \in b^+(R_2)} lg(L, K) \wedge \bigwedge_{L \in b^-(R_1), K \in b^-(R_2)} \neg lg(L, K).$$

LF1T: Learning from 1-Step Transitions

- Input: E ⊆ 2^B × 2^B: (positive) examples/observations,
 P : an (initial) NLP;
- **Output:** NLP *P* s.t. $J = T_{P}(I)$ holds for any $(I, J) \in E$
- 1. If $E = \emptyset$, then output *P* and stop;
- 2. Pick $(I, J) \subseteq E$; put $E := E \notin \{(I, J)\};$
- 3. For each $A \subseteq J$, let

 $R'_{A} := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in \mathbf{B} \neq I} \neg C;$

- 1. If R'_A is not subsumed by any rule in *P*, then $P := P \cup \{R'_A\}$ and simplify *P* by generalizing some rules in *P* and removing all clauses subsumed by them;
- 2. Return to 1.

Resolution as Generalization

• (naïve/ground resolution) Let R_1 and R_2 be two ground rules, and I be a literal such that $h(R_1) = h(R_2)$, $I \subseteq b(R_1)$ and $\overline{I} \subseteq b(R_2)$. If $(b(R_2) \notin {\overline{I}}) \subseteq (b(R_1) \notin {I})$ then the ground resolution of R_1 and R_2 (upon I) is defined as

 $res(R_1,R_2) = h(R_1) \leftarrow \bigwedge_{K \in b(R_1) \notin \{I\}} K$ In particular, if $(b(R_2) \notin \{\overline{I}\}) = (b(R_1) \notin \{I\})$ then the ground resolution is called the *naïve resolution* of R1 and R2 (upon I).

- **Example.** $R_1 = (p \leftarrow q \land r), R_2 = (p \leftarrow \neg q \land r), R_3 = (p \leftarrow \neg q):$ $res(R_1, R_2) = res(R_1, R_3) = (p \leftarrow r).$
- **Proposition**. The naïve resolution of R_1 and R_2 is the least generalization of them, e.g., $Ig(R_1, R_2) = res(R_1, R_2)$.

LF1T (naïve resolution) $[R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in B^{*}} \neg C]$

Step	$I \rightarrow J$	Operation	Rule	ID	Ρ	P _{old}
1	qr→pr	$R^{qr}_{\ \ \ p}$	$p \leftarrow \neg p \land q \land r$	1	1	{}
		R ^{qr} _r	$r \leftarrow \neg p \land q \land r$	2	1,2	
2	pr→q	$R^{pr}_{\ q}$	$q \leftarrow p \land \neg q \land r$	3	1,2,3	
3	$q \rightarrow pr$	$R^{q}{}_{ ho}$	$p \leftarrow \neg p \land q \land \neg r$	4		
		res(4,1)	$p \leftarrow \neg p \land q$	5	2,3,5	+1,4
		R ^q _r	$r \leftarrow \neg p \land q \land \neg r$	6		
		res(6,2)	$r \leftarrow \neg p \land q$	7	3,5,7	+2,6
4	pqr→pq	$R^{pqr}_{\ \ \ p}$	$p \leftarrow p \land q \land r$	8		
		res(8,1)	$p \leftarrow q \wedge r$	9	3,5,7,9	+8
		R^{pqr}_{q}	$q \leftarrow p \land q \land r$	10		
		res(10,3)	$q \leftarrow p \wedge r$	11	5,7,9,11	+3,10

Cont. (naïve resolution) $[R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in B^{*}} \neg C]$

Step	$I \rightarrow J$	Operation	Rule	ID	Р	P _{old}
5	pq→p	R^{pq}_{p}	$p \leftarrow p \land q \land \neg r$	12		
		res(12,5)	$p \leftarrow q \land \neg r$	13	5,7,9,11,13	+12
		res(13,9)	$p \leftarrow q$	14	7,11,14	+5,9,13
6	$p \rightarrow \varepsilon$					
7	ε→r	R^{ε}_{r}	$r \leftarrow \neg p \land \neg q \land \neg r$	15		
		res(15,6)	$r \leftarrow \neg p \land \neg r$	16	7,11,14,16	+15
8	r→r	R ^r _r	$r \leftarrow \neg p \land \neg q \land r$	17		
		res(17,15)	$r \leftarrow \neg p \land \neg q$	18	7,11,14,16,18	+17
		res(18,7)	$r \leftarrow \neg p$	19	11,14,19	+7,16,18

$$p \leftarrow q.$$
$$q \leftarrow p \land r.$$
$$r \leftarrow \neg p.$$

propositional program

 $p(t+1) \leftarrow q(t).$ $q(t+1) \leftarrow p(t) \land r(t).$ $r(t+1) \leftarrow \neg p(t).$

first-order program

LF1T (ground resolution) $[R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in B^{*}} \neg C]$

Step	$I \rightarrow J$	Operation	Rule	ID	Р
1	qr→pr	$R^{qr}_{\ p}$	$p \leftarrow \neg p \land q \land r$	1	1
		R ^{qr} _r	$r \leftarrow \neg p \land q \land r$	2	1,2
2	pr→q	$R^{pr}_{\ q}$	$q \leftarrow p \land \neg q \land r$	3	1,2,3
3	q→pr	$R^{q}{}_{ ho}$	$p \leftarrow \neg p \land q \land \neg r$	4	
		res(4,1)	$p \leftarrow \neg p \land q$	5	2,3,5
		R^{q}_{r}	$r \leftarrow \neg p \land q \land \neg r$	6	
		res(6,2)	$r \leftarrow \neg p \land q$	7	3,5,7
4	$pqr \rightarrow pq$	$R^{pqr}_{\ \ \ p}$	$p \leftarrow p \land q \land r$	8	
		res(8, <mark>5</mark>)	$p \leftarrow q \wedge r$	9	3,5,7,9
		R^{pqr}_{q}	$q \leftarrow p \land q \land r$	10	
		res(10,3)	$q \leftarrow p \wedge r$	11	5,7,9,11

Cont. (ground resolution) $[R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in B \neq I} \neg C]$

Step	$I \rightarrow J$	Operation	Rule	ID	Р
5	$pq \rightarrow p$	R^{pq}_{p}	$p \leftarrow p \land q \land \neg r$	12	
		res(12, <mark>5</mark>)	$p \leftarrow q \land \neg r$	13	5,7,9,11,13
		res(13,9)	$p \leftarrow q$	14	7,11,14
6	$p \rightarrow \varepsilon$				
7	ε→r	R^{ε}_{r}	$r \leftarrow \neg p \land \neg q \land \neg r$	15	
		res(15, <mark>7</mark>)	$r \leftarrow \neg p \land \neg r$	16	7,11,14,16
8	r→r	R ^r _r	$r \leftarrow \neg p \land \neg q \land r$	17	
		res(17, <mark>7</mark>)	$r \leftarrow \neg p \land \neg q$	18	7,11,14,16,18
		res(18, <mark>16</mark>)	$r \leftarrow \neg p$	19	11,14,19

$$p \leftarrow q.$$

$$q \leftarrow p \land r.$$

$$r \leftarrow \neg p.$$

propositional program

 $p(t+1) \leftarrow q(t).$ $q(t+1) \leftarrow p(t) \land r(t).$ $r(t+1) \leftarrow \neg p(t).$

first-order program

Worst-Case Complexity

- Theorem. Using naïve resolution, the memory use of the LF1T algorithm is bounded by O(n 3ⁿ), and the time complexity of learning is bounded by O(n² 9ⁿ), where n = |B|. On the other hand, with ground resolution, the memory use is bounded by O(2ⁿ), which is the maximum size of P, and the time complexity is bounded by O(4ⁿ).
- **Corollary.** Given the set *E* of complete state transitions, which has the size $O(2^n)$, the complexity of LF1T(*E*, \emptyset) with ground resolution is bounded by $O(|E|^2)$. On the other hand, the worst-case complexity of learning with naïve resolution is $O(n^2 \cdot |E|^{4.5})$.

LFBA: Learning from Basins of Attraction

- Input: $\mathcal{I} \subseteq 2^{2^{B}}$: A set of orbits of interpretations (*)
- **Output:** NLP *P* s.t. for $\forall I \in \mathcal{F}$, any $I \in I$ belongs to the basin of attraction of some attractor of *P* contained in *I*
- *** Assumption:** Each I contains the interpretations belonging to the orbit of some $I_0 \in I$ wrt T_p , and that I constitutes a sequence $I_0 \rightarrow I_1 \rightarrow ... \rightarrow I_{k-1} \rightarrow J_0 \rightarrow ... \rightarrow J_{l-1} \rightarrow J_0 \rightarrow ...$, where |I| = k + l and $\{J_0, ..., J_{l-1}\}$ is an attractor.
- 2 orbits $I, J \in \mathcal{F}$ reach the same attractor iff $I \cap J = \emptyset$.
- 1. Put *P* := Ø;
- 2. If $\mathcal{E} = \emptyset$ then output *P* and stop;
- 3. Pick $I \in \mathcal{I}$, and put $\mathcal{I} := \mathcal{I} \notin \{I\}$;
- 4. Put $E := \{(I, J) \mid I, J \in I, J \text{ is the next state of } I\};$
- *5. P* := **LF1T**(*E*, *P*); Return to 2.

LFBA: Example

Input:
$$\mathcal{E} = \{I_1, I_2\}$$

 $I_1: qr \rightarrow pr \rightarrow q \rightarrow pr \rightarrow q \rightarrow ...$
 $I_2: pqr \rightarrow pq \rightarrow p \rightarrow \varepsilon \rightarrow r \rightarrow r \rightarrow ...$
LF1T($E_1, \emptyset, \emptyset$) = {3,5,7};
LF1T($E_2, \{3,5,7\}$) = {11,14,19};

In general, identification of an exact NLP using **LF1T** may require $2^{|B|}$ examples, while $|\mathcal{E}|$ in **LFBA** is bounded by $c\delta$, where δ is the number of attractors.

Learning Boolean Networks

- Benchmarks of Boolean networks are taken from (Dubrova and Teslenko, 2011).
- All possible 1-step state transitions of N from all 2^{|B|} possible initial states I⁰'s are computed from the benchmarks by firstly computing all stable models of τ(N) U I⁰ using the answer set solver clasp, then by running LF1T with these state transitions.
- Environment: Intel Core I7 (3610QM, 2.3GHz). Time limit: 1 hour.
- Boosting is effective to reduce the size/number of rules.

Name	# nodes	$\# \times \text{length of attractor}$	<pre># rules (org./LFIT)</pre>	Naïve	Ground
Arabidopsis thalania	15	10×1	28 / 241	T.O.	13.825s
Budding yeast	12	7×1	54 / 54	6m01s	0.820s
Fission yeast	10	13×1	23/24	5.208s	0.068s
Mammalian cell	10	$1 \times 1, 1 \times 7$	22 / 22	5.756s	0.076s

 Table 3 Learning time of LF1T for Boolean networks up to 15 nodes

Cellular Automata (CA)

- A CA consists of a regular grid of cells.
- A cell has a finite number of possible states.
- The state of each cell changes synchronously in discrete time steps according to local and identical transition rules.
- The state of a cell in the next time step is determined by its current state and the states of its surrounding cells (neighborhood).
- 2-state CA is regarded as an instance of Boolean networks.
- CA is a model of emergence and self-organization, which are two important features of the nature (the real life) as a complex system.
- 1-dimensional 2-state CA can simulate Turing Machine (Wolfram).
- Multi-state CA: Disease Spreading Model—0 (healthy), 1 (infected), values in between (gradually more ill)

Wolfram's Rule 110

current pattern	111	110	101	100	011	010	001	000
new state for center cell	0	1	1	0	1	1	1	0

- $c(x,t+1) \leftarrow c(x-1,t) \land c(x,t) \land \neg c(x+1,t).$
- $c(x,t+1) \leftarrow c(x-1,t) \land \neg c(x,t) \land c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land \neg c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land \neg c(x,t) \land c(x+1,t).$
- Rule 110 is known to be Turing-complete.
- The logic program is *acyclic* (Apt & Bezem, 1990).

Incorporating Background Theories

- Torus world: length 4
- $c(0, t) \leftarrow c(4, t)$.
- $c(5, t) \leftarrow c(1, t)$.

c(3) $\rightarrow c(2), c(3)$ $\rightarrow c(1), c(2), c(3)$ $\rightarrow c(1), c(3), c(4)$ attractor $\rightarrow c(1), c(2), c(3) \rightarrow \dots$

t	(4)	1	2	3	4	(1)
0						
1						
2						
3						
4						
5						
6						

learning rules: $0 \rightarrow 1$ (4), $1 \rightarrow 2$ (2), $2 \rightarrow 3$ (2). learning positive rules: (2), (2), (1).

Incorporating Inductive Bias

- Bias I: The body of each rule exactly contains 3 neighbor literals.
- Bias II: The rules are universal for every time step and any position.
- Biases I and II imply that *anti-instantiation* (AI) can be applied immediately instead of least generalization.

Step	$I \rightarrow J$	Op.	Rule	ID	Р
1	0010→0110	R ³ ₂	$c(2) \leftarrow \neg c(1) \land \neg c(2) \land c(3)$	1	
		AI(1)	$c(x) \leftarrow \neg c(x-1) \land \neg c(x) \land c(x+1)$	2	2
		R ³ 3	$c(3) \leftarrow \neg c(2) \land c(3) \land \neg c(4)$	3	
		AI(3)	$c(x) \leftarrow \neg c(x-1) \land c(x) \land \neg c(x+1)$	4	2,4
2	0110→1110	R ² ₁	$c(1) \leftarrow \neg c(0) \land \neg c(1) \land c(2)$	5	
		R ²³ 2	c(2) $\leftarrow \neg$ c(1) \land c(2) \land c(3)	6	
		AI(6)	$c(x) \leftarrow \neg c(x-1) \land c(x) \land c(x+1)$	7	
		res(7,2)	$c(x) \leftarrow \neg c(x-1) \land c(x+1)$	8	4,8
		res(7,4)	$c(x) \leftarrow \neg c(x-1) \land c(x)$	9	8,9

Incorporating Inductive Bias (Cont.)

Step	$I \rightarrow J$	Op.	Rule	ID	Р
2	0110→1110	R ²³ 3	$c(3) \leftarrow c(2) \land c(3) \land \neg c(4)$	10	
		AI(10)	$c(x) \leftarrow c(x-1) \land c(x) \land \neg c(x+1)$	11	
		res(11,9)	$c(x) \leftarrow c(x) \land \neg c(x+1)$	12	8,9,12
3	1110→1011	<i>R⁰¹</i> ¹	$c(1) \leftarrow \neg c(0) \land c(1) \land c(2)$	13	
		R ³⁴ ₄	$c(4) \leftarrow c(3) \land \neg c(4) \land c(5)$	14	
		AI(14)	$c(x) \leftarrow c(x-1) \land \neg c(x) \land c(x+1)$	15	
		res(15,8)	$c(x) \leftarrow \neg c(x) \land c(x+1)$	16	8,9,12,16

- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x+1,t)$. (8)
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t)$. (9)
- $c(x,t+1) \leftarrow c(x,t) \land \neg c(x+1,t).$ (12)
- $c(x,t+1) \leftarrow \neg c(x,t) \land c(x+1,t)$. (16)

These are simpler than the original 5 rules, but still have one redundant rule.

Conclusion & Ongoing Work

- Oscillating behavior can be observed in any deterministic operator on the Herbrand base. The attractors of synchronous Boolean networks are completely characterized by the supported class semantics of NLPs.
- Learning complex networks becomes more and more important. We tackled the induction problem of such dynamic systems in terms of NLP learning from synchronous state transitions.
 - Given any state transition diagram, which is either complete or partial, we can learn an NLP that exactly captures the system dynamics.
 - Learning is performed only from positive examples, and produces NLPs that consist only of rules to make literals true.
 - Generalization on state transition rules is done by resolution, in which each rule can be replaced by a general rule. An output NLP is as minimal as possible wrt the size of each rule, but may contain redundant rules.
- A more efficient construction in the bottom-up algorithm with BDD (ILP 2013).
- More complex schemes such as asynchronous and probabilistic updates do not obey transition by the T_p operator.

Reference

- Katsumi Inoue. Logic Programming for Boolean Networks. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), pp.924-930, AAAI Press, 2011.
- Katsumi Inoue and Chiaki Sakama. <u>Oscillating Behavior of Logic</u> <u>Programs</u>. In: *Correct Reasoning—Essays on Logic-Based AI in Honour* of Vladimir Lifschitz, LNAI, Vol.7625, pp.345-362, Springer, 2012.
- Chiaki Sakama and Katsumi Inoue. <u>Abduction, Unpredictability and</u> <u>Garden of Eden</u>. *Logic Journal of the IGPL*, to appear, 2013.
- Katsumi Inoue, Tony Ribeiro and Chiaki Sakama. <u>Learning from</u> <u>Interpretation Transition</u>. *Machine Learning*, to appear, 2013.
- Tony Ribeiro, Katsumi Inoue and Chiaki Sakama. A BDD-Based Algorithm for Learning from Interpretation Transition. In: *Proceedings* of ILP 2013, LNAI, Springer, to appear, 2013.