Using MaxSAT to Correct Errors in AES Key Schedule Images

Xiaojuan Liao, Miyuki Koshimura, Hiroshi Fujita, Ryuzo Hasegawa

Hasegawa-Fujita Laboratory Kyushu University

The 3rd CSPSAT2 Meeting

2013-7-26

Outline

- Cold Boot Attack
- Advanced Encryption Standard (AES)
- Recover AES key Schedule
 - Using SAT solvers
 - Using MaxSAT solvers
 - Comparison
- Experiment
- Conclusion

Cold Boot Attack (1/2)

- DRAM:
 - Dynamic Random Access Memory
- DRAM cell:
 - a capacitor that is either 0 or 1
 - 0: ground state
 - 1: charged state
- DRAM remanence:
 - DRAM retains its contents for a period (seconds) after power is lost
 - As time goes on, data may decay and eventually disappear
- Cold boot attack:
 - Exploit DRAM remanence to access sensitive data (e.g., encryption keys)

A Scenario of Cold Boot Attack

Cold Boot Attack (2/2)

- Decay patterns ¹
 - Decay aggravates as time goes on
 - Most bits decay to ground states $(1 \rightarrow 0)$
 - Only a small fraction (0.1%) flips to charged states $(0 \rightarrow 1)$
- This work
 - Recover AES keys from decayed bits

¹ J. Alex Halderman et al., Lest We Remember: Cold Boot Attacks on Encryption Keys. USENIX08.

Outline

- Cold Boot Attack
- Advanced Encryption Standard (AES)
- Recover AES key Schedule
 - Using SAT solvers
 - Using MaxSAT solvers
 - Comparison
- Experiment
- Conclusion

Advanced Encryption Standard (AES)

- What is AES
 - A specification for the encryption of electronic data established by the U.S. NIST¹
 - Adopted by the U.S. government and used worldwide
- AES key ²
 - Initial key length: 128 bits (options: 192 bits, 256 bits)
 - AES-128 key schedule:

Key Expansion Algorithm

Given the 128-bit initial key, the following equations characterize bitrelations among the bits in the last 10 round keys:

$$\begin{array}{|c|c|c|c|c|c|} \hline (r-1)^{\text{th}} \text{ round} & \text{AES-128 key expansion algorithm} & r^{\text{th}} \text{ round} & \\ \hline key \text{ bit} & & \\ b_i^r = b_i^{r-1} \oplus S_{i \mod 8} \left(B_{105+8 \cdot \lfloor i/8 \rfloor}^{r-1} \right) \oplus R_i \left(r \right), & 0 \le i \le 31 & \\ b_i^r = b_i^{r-1} \oplus b_{i-32}^r, & 32 \le i \le 127 & \\ \end{array}$$

 b_i^r : ith bit of the rth round key, $1 \le r \le 10$, $0 \le i \le 127$ b_i^0 : ith bit of the 0th round key, copied from the initial key, $0 \le i \le 127$ $R_i(r)$: ith bit of a round-dependent word, $0 \le i \le 31$, $1 \le r \le 10$ $S_x(B_i^r)$: an S-Box function in algebraic normal form (ANF), $0 \le x \le 7$ input: $B_i^r = \{b_i^r, b_{i+1}^r, K, b_{i+7}^r\}$, output: one bit

10

ANF formula:
$$(b_1 \land b_2) \oplus (b_2 \land b_3 \land b_4) \oplus L$$

+: xor operation*: and operation 2013-7-26

 $S_0(B_0)=S_0(b_7b_6b_5b_4b_3b_2b_1b_0)=$ 1+b6*b4*b0*b2*b0+b2*b3*b5*b0+b5*b1*b6*b0+b5*b6*b2+b2+b5+b1*b3*b4*b0*b0+b5*b6*b3*b2+b2*b4*b3*b6+b2*b4*b3*b0+b1*b0*b0*b5+b1*b0*b6+b1*b2*b5*b6*b0+b1*b3*b2+b1*b4*b2*b6+b5*b0*b6*b0*b2+b0*b6*b3+b6*b0*b3*b2+b6*b4*b3*b0+b3*b1* b4*b2*b0+b0*b2*b0+b6*b3*b0+b2*b6+b4*b3*b0+b6*b4*b0*b2*b3+b6*b4*b1+b5*b2*b0*b4*b3*b6+b0*b2*b6+b1*b3*b6*b0*b0+b 0*b5*b2*b0+b5*b2*b4*b6*b0+b0*b3*b0+b5*b2*b0*b1*b0+b0*b2+b2*b6*b3+b2*b4*b6+b1*b3*b4*b0+b4*b3*b5*b1*b0+b5*b4*b3*b2+b5*b6*b3*b2*b0*b0+b2*b3*b5*b0*b0+b5*b1*b6*b0*b0+b1*b2*b5+b1*b4*b2*b6*b3+b6*b4*b0+b2*b3*b0*b0+b5*b1*b6*b4* b0+b2*b4*b0*b0*b5*b6*b1+b5*b2*b0*b4*b1+b2*b3*b5+b5*b2*b0+b1*b4*b2+b6*b5*b3*b0*b0*b4*b2+b5*b1*b6+b0*b2*b3+b5*b 3+b1*b0+b0*b6+b5*b6*b3*b0+b0*b3+b2*b0+b1*b2*b0+b4*b3+b5*b6*b0+b2*b1*b6*b0*b0+b1*b5*b3*b0*b0*b0*b6*b2+b6*b5*b3*b0*b0*b4*b1+b5*b4*b0*b1*b3+b1*b3*b2*b5*b6+b0*b3*b5+b2*b4*b3*b6*b0+b0+b4*b0*b1*b6+b0*b4*b5*b3+b5*b3*b1*b6*b0* b2+b6*b4*b3*b0*b5+b5*b4*b6*b1*b3+b6+b4*b0*b2+b5*b4*b0+b1*b3*b5*b2*b0*b6+b1*b4*b0*b5+b1*b5*b3*b0*b0*b6+b1*b3*b 4*b0*b0*b6+b2*b4*b0*b3+b6*b4*b0*b2+b1*b5*b6*b4*b2*b0+b6*b0+b6*b0+b5*b1*b3*b0*b0+b5*b2*b0*b0*b4*b3+b1*b3*b6*b2*b0 +b1*b3*b5*b2*b0*b0+b0*b5*b0+b6*b0*b3+b1*b6+b3*b1*b4*b2*b5*b0+b3*b4*b0*b5+b0*b5+b0*b5+b6*b6+b5*b4*b2*b6*b0*b1+ 0*b6+b5*b4*b3*b2*b0*b1+b1*b3*b6*b2+b5*b1*b3*b6+b5*b4*b0*b1+b1*b0*b2+b2*b3*b0+b5*b2*b0*b1+b6*b4*b0*b3+b1*b3*b0*b6+b1*b3*b0+b5*b0*b6*b3+b1*b4*b2*b0+b5*b1+b0*b3+b5*b4*b6+b0*b5*b0*b4+b4*b0*b2*b0*b5+b4*b0*b2*b0*b5*b1+b3*b1* b4*b2+b6*b4*b1*b3+b1*b2+b2*b4*b0*b0*b5*b3+b5*b2*b0*b4+b3*b4*b0*b0+b5*b2*b4

Example of $S_0(B_0)$

Example of Bit Representation

b_0^0

Key Expansion Algorithm (public algorithm)

b_0^1

$$b_0^1 = b_0^0 \oplus S_0 \left(b_{105}^0, b_{106}^0, \mathsf{K}, b_{112}^0 \right) \oplus R_0 \left(1 \right) \qquad b_{127}^1 = b_{127}^0 \oplus b_{95}^1$$

Summary: each bit in the latter 10 rounds is computed from its former bits \rightarrow bit-relations

2013-7-26

Outline

- Cold Boot Attack
- Advanced Encryption Standard (AES)
- Recover AES key Schedule
 - Using SAT solvers
 - Using MaxSAT solvers
 - Comparison
- Experiment
- Conclusion

Assumption of AES Key Recovery

Assumption

- Perfect assumption
 - Decay occurs only on 1s
 - No reverse flipping errors: no 0s flip to 1
- Realistic assumption
 - Decay occurs mainly on 1s
 - A few reverse flipping errors: 0.1% of 0s flip to 1

This work

- Recover AES-128 key schedule based on the realistic assumption

- 1. All 1s in the key schedule are treated as hard constraints $\underline{b}_2^0 = 1, \underline{b}_4^0 = 1, \underline{b}_6^0 = 1, \text{K} \ \underline{b}_{127}^1 = 1, \text{K}$
- 2. All bit-relations are treated as hard constraints

$$\frac{b_0^1 = b_0^0 \oplus S_0(B_{105}^0) \oplus R_0(1)}{b_1^1 = b_1^0 \oplus S_1(B_{105}^0) \oplus R_1(1)}$$
No. of
formulas:

$$\frac{b_0^1 = b_1^0 \oplus S_1(B_{105}^0) \oplus R_1(1)}{b_{127}^1 = b_{127}^0 \oplus b_{95}^1}$$
No. of
formulas:

$$128*10=1280$$
L

3. CryptoMiniSat: support XOR operation natively e.g., understand $x_1 \oplus x_2 \oplus x_3 = 1$

¹ Kamal et al., Applications of SAT solvers to AES key recovery from decayed key schedule images, 2010. ²⁰¹³⁻⁷⁻²⁶

1. All 1s in the key schedule are treated as hard constraints $b_2^0 = 1, b_4^0 = 1, b_6^0 = 1, \text{K} \ b_{127}^1 = 1, \text{K}$

2. All bit-relations are treated as hard constraints

$$b_{0}^{1} = b_{0}^{0} \oplus S_{0} (B_{105}^{0}) \oplus R_{0} (1)$$

$$b_{1}^{1} = b_{1}^{0} \oplus S_{1} (B_{105}^{0}) \oplus R_{1} (1)$$

L

$$b_{127}^{1} = b_{127}^{0} \oplus b_{95}^{1}$$

L

3. CryptoMiniSat: support XOR functions natively e.g., $x_1 \oplus x_2 \oplus x_3 = 1$

- To recover a key schedule with n 1s and k reverse flipping errors
 - In the best case:
 - CryptoMiniSat needs to run
 - In the worst case
 - CryptoMiniSat needs to run $\sum_{n} C_n^i$ times

$$\left(\sum_{1 \le i \le k-1} C_n^i + 1\right)$$
 times

- Deal with two kinds of constraints
 - Hard constraints: must be satisfied
 - Soft constraints: may be unsatisfied
- MaxSAT solver
 - Try to satisfy all hard constraints and the maximum number of soft constraints

- Convert XOR to clauses
 - Direct conversion: $B_i = B_j \oplus B_k$
 - n variables $\rightarrow 2^{n-1}$ clauses

$$(\neg B_{i} \lor \neg B_{j} \lor \neg B_{k}) \land (\neg B_{i} \lor B_{j} \lor B_{k}) \land (B_{i} \lor \neg B_{j} \lor B_{k}) \land (B_{i} \lor \neg B_{j} \lor B_{k}) \land (B_{i} \lor B_{j} \lor \neg B_{k}) \land (B_{i} \lor B_{k} \lor B_{k}) \land (B_{i} \lor B_{k} \lor B_{k} \lor B_{k}) \land (B_{i} \lor B_{k} \lor$$

- Cut-up conversion: Cut long formula into shorter ones $B_i = B_1 \oplus B_2 \oplus L \oplus B_{109} \implies \neg B_i \oplus B_1 \oplus B_2 \oplus L \oplus B_{109} = 1$ $C_1 = \neg B_i \oplus B_1 \oplus B_2 \oplus B_3 \oplus B_4,$ $D_1 = C_1 \oplus C_2 \oplus C_3 \oplus C_4 \oplus C_5,$

 $\begin{array}{c|c} L \\ C_{22} = B_{105} \oplus B_{106} \oplus B_{107} \oplus B_{108} \oplus B_{109}, \\ \hline C_1 \oplus L \oplus C_{22} = 1 \end{array} \begin{array}{c} L \\ D_4 = C_{16} \oplus C_{17} \oplus C_{18} \oplus C_{19} \oplus C_{20}, \\ D_1 \oplus L \oplus D_4 \oplus C_{21} \oplus C_{22} = 1 \end{array}$

 \Rightarrow direct conversion

Comparison

 Recover AES key schedule in the presence of reverse flipping errors

	SAT solver	MaxSAT solver
Treat 1s as	Hard constraints	Soft constraints
Need to run a solver multiple times for solving an instance?	Yes	No 🔮
Support XOR natively?	Yes 🐓	No
51,440 clauses and XOR formulas for representing bit-relations 372,240 clauses for representing bit-relations		,240 clauses for enting bit-relations

Outline

- Cold Boot Attack
- Advanced Encryption Standard (AES)
- Recover AES key Schedule
 - Using SAT solvers
 - Using MaxSAT solvers
 - Comparison
- Experiment
- Conclusion

Experiment(1/4)

- Solver
 - SAT: CryptoMiniSat
 - MaxSAT: Pwbo2.0
 - Better than Akmaxsat, WMaxSatz, QMaxSAT, QMaxSATg2, WPM1, PM2
- Environment
 - Core i5-2540 @ 2.6GHz / 8GB

Experiment (2/4)

Decay factor (%)	CryptoMiniSat (s)	Pwbo2.0 (s)
30	45.8	0.943
40	28.467	0.956
50	19.665	1.168
60	26.524	1.560
70	225.379	12.532
72	678.452	26.782
74	1004.161	231.610
76	1116.353	296.415

- Setting (real situation)
 - Decay factor (probability of 1→0): 30%-76%
 - Probability of flipping 0 to 1:0.1%
 - Number of instances for each decay factor: 100

Among100 instances, the average of No. of instances with 0, 1, 2 reverse flipping errors is 50, 36, 14, respectively

- Result
 - MaxSAT is superior to SAT approach

Experiment (3/4)

Decay factor (%)	CryptoMiniSat (s)	Pwbo2.0 (s)
30	2.045	1.037
40	1.310	1.088
50	1.971	1.345
60	5.026	2.252
70	43.532	14.945
72	47.603	28.354
74	280.825	161.740
76	480.101	384.348

• Setting

- Decay factor (probability of 1→0): 30%-76%
- Number of reverse flipping errors $(0 \rightarrow 1)$: 1
- Number of instances for each decay factor: 100

• Result

 The superiority of MaxSAT is not obvious when the number of reverse flipping errors is 1

Experiment (4/4)

Decay factor (%)	CryptoMiniSat (s)	Pwbo2.0 (s)
30	198.638	1.464
40	162.249	1.562
50	224.689	2.184
60	329.621	4.676
70	3047.821	47.725
72	4909.565	245.177
74	14715.607	2160.648

Setting

- Decay factor (probability of 1→0): 30%-74%
- Number of reverse flipping errors $(0 \rightarrow 1)$: 2
- Number of instances for each decay factor: 40

• Result

 MaxSAT is far superior to SAT when the number of reverse flipping errors is 2

Outline

- Cold Boot Attack
- Advanced Encryption Standard (AES)
- Recover AES key Schedule
 - Using SAT solvers
 - Using MaxSAT solvers
 - Comparison
- Experiment
- Conclusion

Conclusion

- Recover AES key schedule in the presence of reverse flipping errors
 - SAT solver:
 - Treat all 1s as hard constraints
 - Run the solver repeatedly until it outputs SAT
 - CryptoMiniSat: support XOR natively
 - MaxSAT solver:
 - Treat all 1s as soft constraints
 - Solver needs to run only one time
 - Do no support XOR natively
 - Superior to the SAT approach

THE END THANKS FOR YOUR ATTENTION

2013-7-26