Distributed Constraint Satisfaction Algorithm for Complex L ocal Problems

Makoto Yokoo
NTT Communication Science Laboratories
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan
yokoo@cslab.kecl.ntt.co.jp

Katsutoshi Hirayama
Kobe University of Mercantile Marine
5-1-1 Fukae-minami-machi, Higashinada-ku, Kobe 658-0022, Japan
hirayama@ti.kshosen.ac.jp

Abstract

Adistributed constraint satisfaction problem can formal-
ize various application problemsin MAS, and several algo-
rithms for solving this problem have been developed. One
limitation of these algorithmsisthat they assume each agent
has only one local variable. Although simple modifica-
tions enable these algorithms to handle multiple local vari-
ables, obtained algorithms are neither efficient nor scalable
tolarger problems.

We devel op a new algorithm that can handle multiple lo-
cal variablesefficiently, which is based on the asynchronous
weak-commitment search algorithm. In this algorithm, a
bad local solution can be modified without forcing other
agentsto exhaustively searchlocal problems. Also, the num-
ber of interactions among agents can be decreased since
agents communicate only when they find local solutionsthat
satisfy all of thelocal constraints. Experimental evaluations
show that this algorithm is far more efficient than an algo-
rithm that uses the prioritization among agents.

1 Introduction

A constraint satisfaction problem (CSP) is a genera
framework that can formalize various problemsin Al, and
many theoretical and experimental studies have been per-
formed [8]. In [13], a distributed constraint satisfaction
problem (distributed CSP) is formalized as a CSP in which
variablesand constraints are distributed among multiple au-
tomated agents. Various application problems in Multia-
gent Systems (MAYS) that are concerned with finding a con-
sistent combination of agent actions (e.g., distributed re-
source allocation problems[5], distributed scheduling prob-
lems [11], distributed interpretation tasks [9], and multi-

agent truth maintenance tasks [7]) can be formalized as dis-
tributed CSPs. Therefore, we can consider distributed algo-
rithms for solving distributed CSPs as an important infras-
tructurein MAS.

It must be noted that although algorithmsfor solving dis-
tributed CSPs seem to be similar to parallel/distributed pro-
cessing methods for solving CSPs [4, 15], research moti-
vations are fundamentally different. The primary concern
in parallel/distributed processing is the efficiency, and we
can choose any type of parallel/distributed computer ar-
chitecture for solving a given problem efficiently. In con-
trast, in a distributed CSP, there already exists a situation
where knowledge about the problem (i.e., variablesand con-
straints) is distributed among automated agents. Therefore,
the main research issue is how to reach a solution from this
given situation.

The authors have developed a series of agorithms for
solving distributed CSPs, i.e., () a basic algorithm called
asynchronous backtracking [13], in which agents act asyn-
chronously and concurrently based on their local knowl-
edge without any global control, (b) a more efficient algo-
rithm called asynchronousweak-commitment search [12], in
which the priority order of agents is changed dynamically,
and (c) distributed iterative improvement algorithms[6, 14].

One limitation of these algorithms is that they assume
each agent hasonly onelocal variable. Thisassumption can-
not be satisfied when the local problem of each agent be-
comeslargeand complex. Although these agorithmscan be
applied to the situation where one agent has multiple local
variables by the following methods, both methods are nei-
ther efficient nor scalable to large problems.

Method 1: each agent finds al solutions of itslocal prob-
lem first.
By finding al solutions, the given problem can bere-

formalized as a distributed CSP, in which each agent
has one local variable, whose domain is a set of ob-
tained local solutions. Then, agents can apply algo-
rithms for the case of a single local variable. The
drawback of thismethod isthat when alocal problem
becomes large and complex, finding all the solutions
of alocal problem becomes virtually impossible.

Method 2: an agent creates multiple virtual agents, each

of which corresponds to one local variable, and sim-
ulates the activities of these virtual agents.
For example, if agent k hastwo local variablesz;, «;,
we assume that there exist two virtual agents, each of
which corresponds to either z; or ;. Then, agent &
simulatesthe concurrent activities of these two virtual
agents. Inthiscase, each agent doesnot haveto prede-
termine all the local solutions. However, since com-
municating with other agents is usually more expen-
sive than performing local computations, it is waste-
ful to simulate the activities of multiple virtual agents
and not to distinguish the communications between
virtual agents (that are within asingle real agent) and
the communications between real agents.

In [1], the prioritization among agents is introduced for
handling multiple local variables. In this algorithm, each
agent triesto find alocal solution that is consistent with the
local solutions of higher priority agents. If there exists no
such local solution, backtracking or modification of the pri-
oritization occurs. Various heuristics for determining good
ordering among agents are examined [1].

One limitation of this approach is that, if a higher prior-
ity agent selects a bad loca solution (i.e., aloca solution
that cannot be a part of a global solution), a lower priority
agent must exhaustively search itslocal problemin order to
change the bad decision made by the higher priority agent.
When alocal problem becomes|arge and complex, conduct-
ing such an exhaustive search becomesimpossible. Thisap-
proach is similar to that in method 1 described above, ex-
cept that each agent searches for its local solutions only as
required, instead of finding all solutions in advance. How-
ever, if thelocal solution selected by a higher priority agent
isbad, alower priority agent isforced to exhaustively search
itslocal problem after al.

In this paper, we develop a new algorithm that is similar
to that in method 2, but in this algorithm, an agent sequen-
tially performs the computation for each variable, and com-
municateswith other agents only when it canfind alocal so-
lution that satisfies al local constraints. Experimental eval-
uations using example problems show that this algorithmis
far more efficient than an algorithm that employs the prior-
itization among agents, or a simple extension of the asyn-
chronous weak-commitment search algorithm for the case
of asinglelocal variable.

In the following, we briefly describe the definition of a
distributed CSP and the asynchronous weak-commitment
search algorithm for the case of asinglelocal variable (Sec-
tion 2). Then, we present the basic ideas and details of the
asynchronous weak-commitment search algorithm for the
case of multiple local variables (Section 3). Finaly, we
show empirica results that illustrate the efficiency of our
newly devel oped algorithm (Section 4).

2 Distributed Constraint Satisfaction Prob-
lem

2.1 Formalization

A CSPconsistsof n variables ¢, z», . . . , z,,, whose val-
uesaretaken fromfinite, discretedomains D, Do, ..., D,
respectively, and a set of constraints on their values. A
congtraint is defined by a predicate. That is, the constraint
pr(xp1, -+, xk;) 1S a predicate defined on the Cartesian
product Dy X ... x Dy;. Thispredicateistrueiff the value
assignment of these variables satisfies this constraint. Solv-
ing a CSP is equivalent to finding an assignment of values
to al variables such that all constraints are satisfied.

A distributed CSP is a CSP in which the variables and
constraints are distributed among automated agents. We as-
sume the following communication model.

e Agents communicate by sending messages. An agent
can send messages to other agentsiff the agent knows
the addresses of those agents.

e The delay in delivering a message is finite, though
random. For the transmission between any pair of
agents, messages are received in the order in which
they were sent.

Each agent hassome variablesand triesto determinetheir
values. However, there exist inter-agent constraints, and the
value assignment must satisfy these inter-agent constraints.
Formally, there exist m agents 1,2,...,m. Each variable
x; belongs to one agent ¢ (this relation is represented as
belongs(z;, i)). If «; belongsto agent ¢, we call z; alocal
variable of i. Constraints are also distributed among agents.
The fact that an agent k& knows a constraint predicate p; is
represented as known(p;, k). We call a constraint defined
only on local variables of one agent alocal constraint.

We say that a distributed CSP is solved iff the following
conditions are satisfied.

e Vi, Vz; where belongs(z;, ¢), the value of z; is as-
signedto d;,
andV k, Vp, where known(py, k), p; istrue under the
assignment z; = d;.

Figure 1. Example of a constraint network

Without loss of generality, we make the following as-
sumptions while describing our algorithm for simplicity.
Relaxing these assumptions to general cases is relatively
straightforward.

o Each agent knowsall constraint predicatesrelevant to
its variables.

o All constraints are binary.

We can represent a distributed CSP in which all con-
straints are binary as a network, where variables are nodes
and constraintsare links between nodes (Figure 1). Anagent
can be represented as a set of variables, whichisshown asa
large circlein the figure.

2.2 AsynchronousWeak-Commitment Search Al-
gorithm (singlelocal variable)

I n the asynchronous weak-commitment search algorithm
(whereeach agent hasexactly onelocal variable), each agent
concurrently assigns a value to its variable, and sends the
value to other agents. After that, agents wait for and re-
spond to incoming messages. There are two kinds of mes-
sages. ok? messages to communicate the current value, and
nogood messages to communicate information about con-
straint violations. The overview of the algorithm isgiven as
follows.

o For each variable/agent, a non-negative integer value
representing the priority order of the variable/agent is
defined. We call thisvalue the priority value.

e Theorder isdefined such that any variable/agent with
alarger priority value has higher priority.

o If the priority values of multiple agents are the same,
the order is determined by the alphabetical order of
theidentifiers.

e For each variable/agent, the initia priority valueisO.

e After receiving an ok? message, an agent records
the values of other agents in its agent view. The
agent_view represents the state of the world recog-
nized by this agent.

o If the current value satisfies the constraints with
higher priority agents in the agent view, we say that
the current valueis consistent with the agent_view! . If
the current valueisnot consistent with theagent_view,
the agent selects anew value which is consistent with
the agent_view.

o If there exists no consistent value for x;, the prior-
ity value of z; is changed to max+1, where max is
the largest priority value of related agents. The agent
sends nogood messages to relevant agents®. A no-
good message contains a set of variable values that
cannot be a part of any final solution.

By using this algorithm, if a solution exists, agents will
reach a stable state where all constraints are satisfied. |If
there exists no solution, an empty nogood will be found and
the algorithm will terminate?.

3 Asynchronous Weak-Commitment Search
Algorithm (multiplelocal variables)

3.1 Basicldeas

We ae going to modify the asynchronous
weak-commitment search algorithm for the case of asingle
local variable by the following ways.

e An agent sequentially changes the values of its local
variables. More specificaly, it selects a variable zj.
that has the highest priority among variables that are
violating constraints with higher priority variables,
and modifiesz;,’ svalue so that constraintswith higher
priority variables are satisfied.

IMore precisely, the agent must satisfy not only initialy given con-
straint predicates, but also the new constraints communicated by nogood
messages.

2This procedure is necessary to guarantee the completeness of the al-
gorithm. We can omit this procedure if the algorithm completenessis not
required. Actualy, when solving large-scale problems, the algorithm com-
pleteness has only theoretical importance.

3A set of variable values that is a superset of anogood cannot be a fi-
nal solution. If an empty set becomes a nogood, it means that there is no
solution, since any set is a superset of an empty set.

o If there exists no value that satisfies all constraints
with higher priority variables, the agent increasesz;,’s
priority value.

¢ By iterating the above procedures, when all local vari-
ablessatisfy constraintswith higher priority variables,
the agent sends changes to related agents.

Each variable must satisfy constraints with higher prior-
ity variables. Therefore, changing the value of alower pri-
ority variable before the value of a higher priority variable
isfixed isusually wasteful. Therefore, an agent changesthe
value of the highest priority variablefirst. Also, by sending
messages to other agents only when an agent findsa consis-
tent local solution, agents can reduce the number of interac-
tions among agents.

By using this algorithm, if the local solution selected by
ahigher priority agent isbad, alower priority agent does not
have to exhaustively search itslocal problem. It simply in-
creases the priority values of certain variables that violate
constraints with the bad local solution.

3.2 Detailsof Algorithm

In the asynchronous wesak-commitment search algorithm
for the case of multiple local variables, each agent assigns
values to its variables, and sends the values and the prior-
ity values to related agents. After that, agents wait for and
respond to incoming messages*. In Figure 2, the proce-
dures executed by agent i in receiving an ok? message are
described®.

In order to guarantee the completeness of the algo-
rithm, the agent needs to record and communicate no-
goods. Agents try to avoid situations previously found to
be nogoods. However, due to the delay of messages, an
agent view of an agent can occasionally be a superset of
a previously found nogood. In order to avoid reacting to
unstable situations, and performing unnecessary changesto
priority values, if an agent identifies an identical nogood it
has already sent, the agent will not change the priority value
but wait for the next message. By these procedures, the com-
pleteness of the algorithm is guaranteed, since the priority
value of avariable is changed only when a hew nogood is
created.

4 Although the following algorithm is described in away that an agent
reacts to messages sequentially, an agent can handle multiple messages
concurrently, i.e., the agent first revises agent_view according to the mes-
sages, and performs check _agent_view only once.

5]t must be mentioned that the way to determine that agents as awhole
have reached a stable state is not contained in this algorithm. To detect a
stable state, agents must use distributed termination detection algorithms
suchas[2].

when received (ok?, (sender _id, variable._id,
variable_value, priority)) do
add (sender _id, variable_id, variable_ value, priority)
to agent_view;
when agent_view and current_assignments
are not consistent do
check_agent_view; end do;

procedure check _agent view
if agent_view and current_assignments
are consistent then
communicate changes to related agents,
else select x,, which hasthe highest priority and
violating some constraint with
higher priority variables;
if novauein Dy, isconsistent with
agent_view and current_assignments then
record and communicate a nogood, i.e., the subset
of agent_view and current_assignments,
where z;, has no consistent value;
when the obtained nogood is new do
set ;" spriority value to the highest priority
value of related variables + 1;
select d € D, where d minimizes the number of
constraint violations with
lower priority variables;
set thevalue of zy to d;
check _agent_view; end do;
elseselect d € D, whered is consistent
with agent_view and current_assignments,
and minimizes the number of constraint
violations with lower priority variables;
set the value of z;, to d;
check _agent_view; end if; end if;

Figure 2. Procedure for handling ok?
messages (asynchronous weak-commitment
search for the case of multiple local variables)

3.3 Exampleof Algorithm Execution

We show an example of algorithm execution in Figure 3.
This problem is an instance of a distributed graph-coloring
problem, where the goal is to assign a color to each node
so that the nodes connected by alink have different colors.
The possible colors for each node are black, white, or gray.
Therearetwo agents, i.e., agentl and agent2, each of which
has three variables.

We assume that the initial values are chosen as in Fig-
ure 3 (8). Each agent communicates these initial values
via ok? messages. In the initial state, priority values of
al variables are 0. Each agent checks whether the current
value assignments are consistent with higher priority vari-
ables. Sincethe priority values are al equal, the priority or-
der isdetermined by the a phabetical order of variableiden-
tifiers. Therefore, al variables of agentl are ranked higher
than those of agent2, so agent1 does not need to change the
values of its variables.

On the other hand, for agent2, while x4, which has
the highest priority within agent2, satisfies all constraints
with higher priority variables, x5 does not satisfy the con-
straint between z5. Therefore, agent2 changes z5’s value
to gray, which satisfies the constraints between x5 and x4.
By this change, the constraint between z5 and z¢ is vio-
lated. Agent2 tries to change z¢'s value, but there exists no
value that satisfies all constraints since all colors are taken
by higher priority variables (x5 isblack, x4 iswhite, and x5
isgray). Therefore, agent2 increases z¢'s priority value to
1.

It changes z¢’s value so that it satisfies as many con-
straints between lower priority variables as possible. In this
case, each color violates one constraint, so agent2 randomly
selects xg's color (black is selected in this case). Also,
agent2 records and communicates a nogood {(z3, black),
(x4, white), (x5, gray)}, if the completeness of the ago-
rithmisrequired. Asaresult, all variables of agent2 satisfy
all constraintswith higher priority variables, so it communi-
cates the changes to agentl (Figure 3 (b)).

Then, for agentl, whilez; and z» satisfy constraintswith
higher priority variables, =3 violates a constraint with zg,
which a priority value of 1. Therefore, agent1 changes z3’s
valueto gray, then aglobally consistent solution is obtained
(Figure 3 (c)).

Actualy, there exists no local solution for agent2 that is
consistent with agent1’sinitial local solution. Therefore, if
we use the prioritization among agents, agent2 needs to ex-
haustively searchitslocal problem. Conversely, inthisalgo-
rithm, since a priority value is associated to each variable,
and it is changed dynamically, a bad local solution can be
modified without exhaustively searching alocal problem.

4 Evaluations

In this section, we evaluate the efficiency of distributed
constraint satisfaction algorithms using adiscrete event sim-
ulation, where each agent maintainsitsown simulated clock.
An agent’stime is incremented by one simulated time unit
whenever it performs one cycle of computation. One cycle
consists of reading all incoming messages, performing local
computation, and then sending messages. We assume that a
message issued at time ¢ is available to the recipient at time
t+1. Weanalyzethe performancein terms of the number of
cycles required to solve a problem. One cycle corresponds
to aseries of agent actions, in which an agent recognizesthe
state of the world, then decidesits responseto that state, and
communicates its decisions.

In order to compare the efficiency of our proposed
algorithm (multiple local variables asynchronous weak-
commitment search, multi-AWC), we use an algorithm that
employs prioritization among agents, and the priorities are
changed when one agent finds that there exists no consis-
tent local solution with higher priority agents (asynchronous
weak-commitment search with agent priority, AWC+AP),
and an algorithm in which each agent simulates the activi-
ties of multiple virtual agents (single variable asynchronous
weak-commitment search, single-AWC). AWC+AP isbasi-
cally identical to the a gorithm using the decaying nogoods
heuristic described in [1]. However, in [1], agents are as-
sumed to act in a sequential order. To make the comparison
fair, we let agents act concurrently in AWC+AP. Also, each
agent performs min-conflict backtracking [10] in AWC+AP.

We useadistributed graph-col oring problem for our eval-
uations. This problem can represent various application
problems such as channel allocation problems in mobile
communication systems, in which adjoining cells (regions)
cannot use the same channels to avoid interference.

A graph-coloring problem can be characterized by three
parameters, i.e., the number of nodes/variables n, the num-
ber of possible colors for each nodes &, and the number of
links between nodes!. A parameter called link density (I/n)
affectsthe difficulty of aproblem instance, and when k = 3,
the setting [/n = 2.7 has been identified as a critical setting
that produces particularly difficult problem instances[3].

In Table 1, we show the results where the number of
agentsm is 10, the number of possible colorsk is 3, and the
number of links [isset to n x 2.7, varying the number of
variablesfor each agent n/m. Each datapoint istheaverage
of the trials for 100 randomly generated problem instances.
Also, in Table 2, we show theresults obtained by varying the
number of agents m, while setting the number of variables
for each agent to 10.

If we simply generate links at random, the number of
links within an agent becomes very small. For example, if
there exist 10 agents, each of which has 10 variables, a-

o

agentl X4
X3
4
X
X
agent2

(a)

Figure 3. Example of algorithm execution

though thereare 270 linksinall, only lessthan 10% arelocal
constrains. For each agent, there exist only two or threelocal
constraints. Since alocal problem of each agent should be a
meaningful cluster of variables, it is natural to assume that
local constraintsshould be at |east astight asinter-agent con-
straints. Therefore, we are going to assign half of thelinksto
local constraints, and another half to inter-agent constraints.
We randomly generate a problem with these parameter set-
tings using the method described in [10], so that the graphis
connected and the problem has a solution. The initial value
of each variable is determined randomly.

To conduct the experiments within a reasonable amount
of time, we limited the number of cyclesto 10000 for each
trial, and terminated the algorithmif thislimit was exceeded,;
we counted the result as 10000. We show the ratio of tri-
als successfully completed to the total number of trialsin
the table. Furthermore, to obtain an idea of how much lo-
cal computation is performed, we measure the number of
consistency checks. Namely, for each cycle, we select an
agent that performs the most consistency checks (a bottle-
neck agent for each cycle), and show the summation of con-
sistency checks for these bottleneck agents.

The following facts can be derived from these results.

o For all parameter settings in our experiments, multi-
AWC outperforms singleeAWC and AWC+AP (both
in the number of required cycles and the number of
consistency checks), and this becomes greater as the
size of local problems or the number of agents in-
Creases.

e The number of required cycles for multi-AWC is

smaller than for single-AWC, since in multi-AWC,
agents communicate only when they find consistent
loca solutions. On the other hand, in single-AWC,
each agent simply simulates the activities of multi-
ple virtual agents, and agents communicate even if
the values of the virtual agents within a single real
agent are not consistent with the others. Although
the number of consistency checks for each cycle in
single-AWC is smaller than that of multiple-AWC, it
never compensates for the increase in the number of
required cycles.

The number of required cycles for multi-AWC is
smaller than for AWC+AP. At first glance, this result
seems somewhat surprising, since in AWC+AP, each
agent is so diligent that it exhaustively searches for
its local problem to find a local solution consistent
with higher priority agents, whilein multi-AWC, each
agent is rather lazy and tries to increase the priority
values of itsvariablesinstead of trying to satisfy con-
straintswith higher priority variables. However, inre-
ality, diligently trying to find a consistent local solu-
tion with higher priority agents should not necessar-
ily be good for agents as a whole. While the consis-
tent local solution satisfies @l constraints with higher
priority agents, it may violate many constraints with
lower priority agents. Therefore, the convergence to
aglobal solution can be slower than with multi-AWC,
where each agent simply increases the priority values

Table 1. Evaluation by varying the number of variables per agent n/m (k = 3,1 = 2.7 x n,m = 10)

multi-AWC AWC+AP single-AWC
n/m | ratio | cycles checks | ratio | cycles checks | ratio | cycles checks
5 | 100% 26.9 2989.6 | 100% 35.9 3617.6 | 100% | 323.0 13630.7
10 | 100% 89.5 | 224812 | 100% | 577.7 | 155026.1 | 79% | 4713.0 | 369195.0
15| 100% | 189.5 | 87688.8 | 79% | 3951.8 | 1978801.9 | 14% | 9083.4 | 1031475.1
20 | 100% | 488.1 | 320312.6 | 37% | 7529.6 | 6691615.5 0% — —

Table 2. Evaluation by varying the number of agents m (k = 3,1 = 2.7 x n, n/m = 10)

multi-AWC AWC+AP singleeAWC

m | ratio | cycles checks | ratio | cycles checks | ratio | cycles checks

10 | 100% 89.5 | 22481.2 | 100% | 577.7 | 155026.1 | 79% | 4713.0 | 369195.0

15 | 100% | 214.7 | 62049.3 | 90% | 3039.2 | 888422.6 | 10% | 9573.6 | 779022.9

20 | 100% | 615.6 | 190718.2 | 54% | 6568.1 | 2083577.1 | 0% — —
of their variables, then tries to minimize the number
of constraint violations as awhole.
Figure 4 shows the trace of the number of constraint
violationswhen solving one problem instance with 10
agents, 10 variables. We can see that reducing the
total number of constraint violations becomes rather
difficult if agents devote too much energy to satisfy-
ing constraints with higher priority agents. é 100, — AWCHAP
If each agent tries to find a consistent local solution = 801 multi-AWC

. [=)

that not only satisfies all constraints with higher pri- g
ority agents, but also minimizes the number of con- 2 601
straint violations with lower priority agents, the con- s \
vergence to a global solution can be hastened. How- ‘é 401
ever, it requires too many computations for an agent. S \
Note that although each agent uses the min-conflict « 201 “M\“/M\J‘-'\N\JVV\'\M\
backtracking in AWC+AP, there is no guarantee that S o
the obtained local solution minimizes the number of Z 0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0

constraint violations with lower priority agents.

In [1], more sophisticated heuristics for prioritization
among agents are presented. However, the evalu-
ation results in [1] show that the speedup obtained
by employing these heuristics are not very drastic (at
most two-fold) compared with the simple decaying
nogoods heuristic used in AWC+AP. Therefore, we
cannot assume that AWC+AP will outperform multi-
AWC by employing more sophisticated prioritization
heuristics when local problems are large.

Cycle

Figure 4. Traces of No. of constraint viola-
tions

5 Conclusions

In this paper, we devel oped a new algorithm that can effi-
ciently solveadistributed CSP, in which each agent hasmul-
tiple local variables. This algorithm is based on the asyn-
chronous weak-commitment search algorithm for the case
of asinglelocal variable, but an agent sequentially performs
the computation for each variable, and communicates with
other agents only when it can find a local solution (which
satisfiesall local constraints). By using thisalgorithm, abad
local solution can be modified without forcing other agents
to exhaustively search their local solutions, and the num-
ber of interactions among agents can be decreased. Exper-
imental evaluations showed that this algorithm is far more
efficient than the algorithm that employs the prioritization
among agents, or a simple extension of the asynchronous
weak-commitment search algorithm for the case of asingle
local variable.

Acknowledgments

The authors wish to thank Koichi Matsuda and Fumio
Hattori for their supportsin this work.

References

[1] A.Armstrong and E. Durfee. Dynamic prioritization of com-
plex agentsin distributed constraint satisfaction problems. In
Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 620625, 1997.

[2] K. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Trans. on
Computer Systems, 3(1):63—-75, 1985.

[3] P.Cheeseman, B. Kanefsky, and W. Taylor. Wherethereally
hard problems are. In Proceedings of the Twelfth Interna-
tional Joint Conferenceon Artificial Intelligence, pages 331—
337, 1991.

[4] Z. Callin, R. Dechter, and S. Katz. On the feasibility of
distributed constraint satisfaction. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelli-
gence, pages 318-324, 1991.

[5] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer.
Multistage negotiation for distributed constraint satisfac-
tion. |EEE Transactions on Systems, Man and Cybernetics,
21(6):1462-1477, 1991.

[6] K.HirayamaandJ. Toyoda. Forming coalitionsfor breaking
deadlocks. In Proceedings of the First international Confer-
ence on Multiagent Systems, pages 155-162, 1995.

[7] M.N.HuhnsandD. M. Bridgeland. Multiagent truth mainte-
nance. |EEE Transactionson Systems, Man and Cybernetics,
21(6):1437-1445, 1991.

[8] A.K.Mackworth. Constraint satisfaction. In S. C. Shapiro,
editor, Encyclopedia of Artificial Intelligence, pages 285—
293. Wiley-Interscience Publication, New York, 1992.

(9]

[10]

[11]

[12]

[13]

[14]

[19]

C. Mason and R. Johnson. DATMS: A framework for dis-
tributed assumption based reasoning. In L. Gasser and
M. Huhns, editors, Distributed Artificial Intelligence vol.ll,
pages 293-318. Morgan Kaufmann, 1989.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Mini-
mizing conflicts: aheuristic repair method for constraint sat-
isfaction and scheduling problems. Artificial Intelligence,
58(1-3):161-205, 1992.

K. P. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed
constrained heuristic search. | EEE Transactions on Systems,
Man and Cybernetics, 21(6):1446-1461, 1991.

M. Yokoo. Asynchronous weak-commitment search for
solving distributed constraint satisfaction problems. In Pro-
ceedings of the First International Conference on Princi-
plesand Practice of Constraint Programming (LectureNotes
in Computer Science 976), pages 88—-102. Springer-Verlag,
1995.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed
problem solving. In Proceedings of the Twelfth IEEE In-
ternational Conference on Distributed Computing Systems,
pages 614621, 1992.

M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction prob-
lems. In Proceedingsof the Second I nternational Conference
on Multi-Agent Systems, pages 401-408. MIT Press, 1996.
Y. Zhang and A. Mackworth. Parallel and distributed algo-
rithms for finite constraint satisfaction problems. In Pro-
ceedings of the Third IEEE Symposium on Parallel and Dis-
tributed Processing, pages 394-397, 1991.

