
Distributed Constraint Satisfaction Algorithm for Complex Local Problems

Makoto Yokoo
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan
yokoo@cslab.kecl.ntt.co.jp

Katsutoshi Hirayama
Kobe University of Mercantile Marine

5-1-1 Fukae-minami-machi, Higashinada-ku, Kobe 658-0022, Japan
hirayama@ti.kshosen.ac.jp

Abstract

A distributed constraint satisfaction problem can formal-
ize various application problems in MAS, and several algo-
rithms for solving this problem have been developed. One
limitation of these algorithms is that they assume each agent
has only one local variable. Although simple modifica-
tions enable these algorithms to handle multiple local vari-
ables, obtained algorithms are neither efficient nor scalable
to larger problems.

We develop a new algorithm that can handle multiple lo-
cal variables efficiently, which is based on the asynchronous
weak-commitment search algorithm. In this algorithm, a
bad local solution can be modified without forcing other
agents to exhaustively search local problems. Also, the num-
ber of interactions among agents can be decreased since
agents communicate only when they find local solutions that
satisfy all of the local constraints. Experimental evaluations
show that this algorithm is far more efficient than an algo-
rithm that uses the prioritization among agents.

1 Introduction

A constraint satisfaction problem (CSP) is a general
framework that can formalize various problems in AI, and
many theoretical and experimental studies have been per-
formed [8]. In [13], a distributed constraint satisfaction
problem (distributed CSP) is formalized as a CSP in which
variables and constraints are distributed among multiple au-
tomated agents. Various application problems in Multia-
gent Systems (MAS) that are concerned with finding a con-
sistent combination of agent actions (e.g., distributed re-
source allocation problems [5], distributed scheduling prob-
lems [11], distributed interpretation tasks [9], and multi-

agent truth maintenance tasks [7]) can be formalized as dis-
tributed CSPs. Therefore, we can consider distributed algo-
rithms for solving distributed CSPs as an important infras-
tructure in MAS.

It must be noted that although algorithms for solving dis-
tributed CSPs seem to be similar to parallel/distributed pro-
cessing methods for solving CSPs [4, 15], research moti-
vations are fundamentally different. The primary concern
in parallel/distributed processing is the efficiency, and we
can choose any type of parallel/distributed computer ar-
chitecture for solving a given problem efficiently. In con-
trast, in a distributed CSP, there already exists a situation
where knowledge about the problem (i.e., variables and con-
straints) is distributed among automated agents. Therefore,
the main research issue is how to reach a solution from this
given situation.

The authors have developed a series of algorithms for
solving distributed CSPs, i.e., (a) a basic algorithm called
asynchronous backtracking [13], in which agents act asyn-
chronously and concurrently based on their local knowl-
edge without any global control, (b) a more efficient algo-
rithm called asynchronous weak-commitment search [12], in
which the priority order of agents is changed dynamically,
and (c) distributed iterative improvement algorithms [6, 14].

One limitation of these algorithms is that they assume
each agent has only one local variable. This assumption can-
not be satisfied when the local problem of each agent be-
comes large and complex. Although these algorithms can be
applied to the situation where one agent has multiple local
variables by the following methods, both methods are nei-
ther efficient nor scalable to large problems.

Method 1: each agent finds all solutions of its local prob-
lem first.
By finding all solutions, the given problem can be re-



formalized as a distributed CSP, in which each agent
has one local variable, whose domain is a set of ob-
tained local solutions. Then, agents can apply algo-
rithms for the case of a single local variable. The
drawback of this method is that when a local problem
becomes large and complex, finding all the solutions
of a local problem becomes virtually impossible.

Method 2: an agent creates multiple virtual agents, each
of which corresponds to one local variable, and sim-
ulates the activities of these virtual agents.
For example, if agent k has two local variables xi; xj ,
we assume that there exist two virtual agents, each of
which corresponds to either xi or xj . Then, agent k
simulates the concurrent activities of these two virtual
agents. In this case, each agent does not have to prede-
termine all the local solutions. However, since com-
municating with other agents is usually more expen-
sive than performing local computations, it is waste-
ful to simulate the activities of multiple virtual agents
and not to distinguish the communications between
virtual agents (that are within a single real agent) and
the communications between real agents.

In [1], the prioritization among agents is introduced for
handling multiple local variables. In this algorithm, each
agent tries to find a local solution that is consistent with the
local solutions of higher priority agents. If there exists no
such local solution, backtracking or modification of the pri-
oritization occurs. Various heuristics for determining good
ordering among agents are examined [1].

One limitation of this approach is that, if a higher prior-
ity agent selects a bad local solution (i.e., a local solution
that cannot be a part of a global solution), a lower priority
agent must exhaustively search its local problem in order to
change the bad decision made by the higher priority agent.
When a local problem becomes large and complex, conduct-
ing such an exhaustive search becomes impossible. This ap-
proach is similar to that in method 1 described above, ex-
cept that each agent searches for its local solutions only as
required, instead of finding all solutions in advance. How-
ever, if the local solution selected by a higher priority agent
is bad, a lower priority agent is forced to exhaustively search
its local problem after all.

In this paper, we develop a new algorithm that is similar
to that in method 2, but in this algorithm, an agent sequen-
tially performs the computation for each variable, and com-
municates with other agents only when it can find a local so-
lution that satisfies all local constraints. Experimental eval-
uations using example problems show that this algorithm is
far more efficient than an algorithm that employs the prior-
itization among agents, or a simple extension of the asyn-
chronous weak-commitment search algorithm for the case
of a single local variable.

In the following, we briefly describe the definition of a
distributed CSP and the asynchronous weak-commitment
search algorithm for the case of a single local variable (Sec-
tion 2). Then, we present the basic ideas and details of the
asynchronous weak-commitment search algorithm for the
case of multiple local variables (Section 3). Finally, we
show empirical results that illustrate the efficiency of our
newly developed algorithm (Section 4).

2 Distributed Constraint Satisfaction Prob-
lem

2.1 Formalization

A CSP consists of n variables x1; x2; : : : ; xn, whose val-
ues are taken from finite, discrete domains D1; D2; : : : ; Dn,
respectively, and a set of constraints on their values. A
constraint is defined by a predicate. That is, the constraint
pk(xk1; � � � ; xkj) is a predicate defined on the Cartesian
product Dk1� : : :�Dkj . This predicate is true iff the value
assignment of these variables satisfies this constraint. Solv-
ing a CSP is equivalent to finding an assignment of values
to all variables such that all constraints are satisfied.

A distributed CSP is a CSP in which the variables and
constraints are distributed among automated agents. We as-
sume the following communication model.

� Agents communicate by sending messages. An agent
can send messages to other agents iff the agent knows
the addresses of those agents.

� The delay in delivering a message is finite, though
random. For the transmission between any pair of
agents, messages are received in the order in which
they were sent.

Each agent has some variables and tries to determine their
values. However, there exist inter-agent constraints, and the
value assignment must satisfy these inter-agent constraints.
Formally, there exist m agents 1; 2; : : : ;m. Each variable
xj belongs to one agent i (this relation is represented as
belongs(xj ; i)). If xj belongs to agent i, we call xj a local
variable of i. Constraints are also distributed among agents.
The fact that an agent k knows a constraint predicate pl is
represented as known(pl; k). We call a constraint defined
only on local variables of one agent a local constraint.

We say that a distributed CSP is solved iff the following
conditions are satisfied.

� 8 i, 8xj where belongs(xj ; i), the value of xj is as-
signed to dj ,
and 8 k, 8pl where known(pl; k), pl is true under the
assignment xj = dj .



������

������
������

Figure 1. Example of a constraint network

Without loss of generality, we make the following as-
sumptions while describing our algorithm for simplicity.
Relaxing these assumptions to general cases is relatively
straightforward.

� Each agent knows all constraint predicates relevant to
its variables.

� All constraints are binary.

We can represent a distributed CSP in which all con-
straints are binary as a network, where variables are nodes
and constraints are links between nodes (Figure 1). An agent
can be represented as a set of variables, which is shown as a
large circle in the figure.

2.2 Asynchronous Weak-Commitment Search Al-
gorithm (single local variable)

In the asynchronous weak-commitment search algorithm
(where each agent has exactly one local variable), each agent
concurrently assigns a value to its variable, and sends the
value to other agents. After that, agents wait for and re-
spond to incoming messages. There are two kinds of mes-
sages: ok? messages to communicate the current value, and
nogood messages to communicate information about con-
straint violations. The overview of the algorithm is given as
follows.

� For each variable/agent, a non-negative integer value
representing the priority order of the variable/agent is
defined. We call this value the priority value.

� The order is defined such that any variable/agent with
a larger priority value has higher priority.

� If the priority values of multiple agents are the same,
the order is determined by the alphabetical order of
the identifiers.

� For each variable/agent, the initial priority value is 0.

� After receiving an ok? message, an agent records
the values of other agents in its agent view. The
agent view represents the state of the world recog-
nized by this agent.

� If the current value satisfies the constraints with
higher priority agents in the agent view, we say that
the current value is consistent with the agent view1. If
the current value is not consistent with the agent view,
the agent selects a new value which is consistent with
the agent view.

� If there exists no consistent value for xi, the prior-
ity value of xi is changed to max+1, where max is
the largest priority value of related agents. The agent
sends nogood messages to relevant agents2. A no-
good message contains a set of variable values that
cannot be a part of any final solution.

By using this algorithm, if a solution exists, agents will
reach a stable state where all constraints are satisfied. If
there exists no solution, an empty nogood will be found and
the algorithm will terminate3.

3 Asynchronous Weak-Commitment Search
Algorithm (multiple local variables)

3.1 Basic Ideas

We are going to modify the asynchronous
weak-commitment search algorithm for the case of a single
local variable by the following ways.

� An agent sequentially changes the values of its local
variables. More specifically, it selects a variable xk

that has the highest priority among variables that are
violating constraints with higher priority variables,
and modifiesxk’s value so that constraints with higher
priority variables are satisfied.

1More precisely, the agent must satisfy not only initially given con-
straint predicates, but also the new constraints communicated by nogood
messages.

2This procedure is necessary to guarantee the completeness of the al-
gorithm. We can omit this procedure if the algorithm completeness is not
required. Actually, when solving large-scale problems, the algorithm com-
pleteness has only theoretical importance.

3A set of variable values that is a superset of a nogood cannot be a fi-
nal solution. If an empty set becomes a nogood, it means that there is no
solution, since any set is a superset of an empty set.



� If there exists no value that satisfies all constraints
with higher priority variables, the agent increases xk’s
priority value.

� By iterating the above procedures, when all local vari-
ables satisfy constraints with higher priority variables,
the agent sends changes to related agents.

Each variable must satisfy constraints with higher prior-
ity variables. Therefore, changing the value of a lower pri-
ority variable before the value of a higher priority variable
is fixed is usually wasteful. Therefore, an agent changes the
value of the highest priority variable first. Also, by sending
messages to other agents only when an agent finds a consis-
tent local solution, agents can reduce the number of interac-
tions among agents.

By using this algorithm, if the local solution selected by
a higher priority agent is bad, a lower priority agent does not
have to exhaustively search its local problem. It simply in-
creases the priority values of certain variables that violate
constraints with the bad local solution.

3.2 Details of Algorithm

In the asynchronous weak-commitment search algorithm
for the case of multiple local variables, each agent assigns
values to its variables, and sends the values and the prior-
ity values to related agents. After that, agents wait for and
respond to incoming messages4. In Figure 2, the proce-
dures executed by agent i in receiving an ok? message are
described5.

In order to guarantee the completeness of the algo-
rithm, the agent needs to record and communicate no-
goods. Agents try to avoid situations previously found to
be nogoods. However, due to the delay of messages, an
agent view of an agent can occasionally be a superset of
a previously found nogood. In order to avoid reacting to
unstable situations, and performing unnecessary changes to
priority values, if an agent identifies an identical nogood it
has already sent, the agent will not change the priority value
but wait for the next message. By these procedures, the com-
pleteness of the algorithm is guaranteed, since the priority
value of a variable is changed only when a new nogood is
created.

4Although the following algorithm is described in a way that an agent
reacts to messages sequentially, an agent can handle multiple messages
concurrently, i.e., the agent first revises agent view according to the mes-
sages, and performs check agent view only once.

5It must be mentioned that the way to determine that agents as a whole
have reached a stable state is not contained in this algorithm. To detect a
stable state, agents must use distributed termination detection algorithms
such as [2].

when received (ok?, (sender id, variable id,

variable value, priority)) do
add (sender id, variable id, variable value, priority)

to agent view;

when agent view and current assignments

are not consistent do
check agent view; end do;

procedure check agent view
if agent view and current assignments

are consistent then
communicate changes to related agents;

else select xk, which has the highest priority and

violating some constraint with

higher priority variables;

if no value in Dk is consistent with

agent view and current assignments then
record and communicate a nogood, i.e., the subset

of agent view and current assignments,

where xk has no consistent value;

when the obtained nogood is new do
set xk’s priority value to the highest priority

value of related variables + 1;

select d 2 Dk where d minimizes the number of

constraint violations with

lower priority variables;

set the value of xk to d;

check agent view; end do;
else select d 2 Dk where d is consistent

with agent view and current assignments,

and minimizes the number of constraint

violations with lower priority variables;

set the value of xk to d;

check agent view; end if; end if;

Figure 2. Procedure for handling ok?
messages (asynchronous weak-commitment
search for the case of multiple local variables)



3.3 Example of Algorithm Execution

We show an example of algorithm execution in Figure 3.
This problem is an instance of a distributed graph-coloring
problem, where the goal is to assign a color to each node
so that the nodes connected by a link have different colors.
The possible colors for each node are black, white, or gray.
There are two agents, i.e., agent1 and agent2, each of which
has three variables.

We assume that the initial values are chosen as in Fig-
ure 3 (a). Each agent communicates these initial values
via ok? messages. In the initial state, priority values of
all variables are 0. Each agent checks whether the current
value assignments are consistent with higher priority vari-
ables. Since the priority values are all equal, the priority or-
der is determined by the alphabetical order of variable iden-
tifiers. Therefore, all variables of agent1 are ranked higher
than those of agent2, so agent1 does not need to change the
values of its variables.

On the other hand, for agent2, while x4, which has
the highest priority within agent2, satisfies all constraints
with higher priority variables, x5 does not satisfy the con-
straint between x2. Therefore, agent2 changes x5’s value
to gray, which satisfies the constraints between x2 and x4.
By this change, the constraint between x5 and x6 is vio-
lated. Agent2 tries to change x6’s value, but there exists no
value that satisfies all constraints since all colors are taken
by higher priority variables (x3 is black, x4 is white, and x5
is gray). Therefore, agent2 increases x6’s priority value to
1.

It changes x6’s value so that it satisfies as many con-
straints between lower priority variables as possible. In this
case, each color violates one constraint, so agent2 randomly
selects x6’s color (black is selected in this case). Also,
agent2 records and communicates a nogood f(x3, black),
(x4, white), (x5, gray)g, if the completeness of the algo-
rithm is required. As a result, all variables of agent2 satisfy
all constraints with higher priority variables, so it communi-
cates the changes to agent1 (Figure 3 (b)).

Then, for agent1, while x1 and x2 satisfy constraints with
higher priority variables, x3 violates a constraint with x6,
which a priority value of 1. Therefore, agent1 changes x3’s
value to gray, then a globally consistent solution is obtained
(Figure 3 (c)).

Actually, there exists no local solution for agent2 that is
consistent with agent1’s initial local solution. Therefore, if
we use the prioritization among agents, agent2 needs to ex-
haustively search its local problem. Conversely, in this algo-
rithm, since a priority value is associated to each variable,
and it is changed dynamically, a bad local solution can be
modified without exhaustively searching a local problem.

4 Evaluations

In this section, we evaluate the efficiency of distributed
constraint satisfaction algorithms using a discrete event sim-
ulation, where each agent maintains its own simulated clock.
An agent’s time is incremented by one simulated time unit
whenever it performs one cycle of computation. One cycle
consists of reading all incoming messages, performing local
computation, and then sending messages. We assume that a
message issued at time t is available to the recipient at time
t+1. We analyze the performance in terms of the number of
cycles required to solve a problem. One cycle corresponds
to a series of agent actions, in which an agent recognizes the
state of the world, then decides its response to that state, and
communicates its decisions.

In order to compare the efficiency of our proposed
algorithm (multiple local variables asynchronous weak-
commitment search, multi-AWC), we use an algorithm that
employs prioritization among agents, and the priorities are
changed when one agent finds that there exists no consis-
tent local solution with higher priority agents (asynchronous
weak-commitment search with agent priority, AWC+AP),
and an algorithm in which each agent simulates the activi-
ties of multiple virtual agents (single variable asynchronous
weak-commitment search, single-AWC). AWC+AP is basi-
cally identical to the algorithm using the decaying nogoods
heuristic described in [1]. However, in [1], agents are as-
sumed to act in a sequential order. To make the comparison
fair, we let agents act concurrently in AWC+AP. Also, each
agent performs min-conflict backtracking [10] in AWC+AP.

We use a distributed graph-coloring problem for our eval-
uations. This problem can represent various application
problems such as channel allocation problems in mobile
communication systems, in which adjoining cells (regions)
cannot use the same channels to avoid interference.

A graph-coloring problem can be characterized by three
parameters, i.e., the number of nodes/variables n, the num-
ber of possible colors for each nodes k, and the number of
links between nodes l. A parameter called link density (l=n)
affects the difficulty of a problem instance, and when k = 3,
the setting l=n = 2:7 has been identified as a critical setting
that produces particularly difficult problem instances [3].

In Table 1, we show the results where the number of
agents m is 10, the number of possible colors k is 3, and the
number of links l is set to n � 2:7, varying the number of
variables for each agent n=m. Each data point is the average
of the trials for 100 randomly generated problem instances.
Also, in Table 2, we show the results obtained by varying the
number of agents m, while setting the number of variables
for each agent to 10.

If we simply generate links at random, the number of
links within an agent becomes very small. For example, if
there exist 10 agents, each of which has 10 variables, al-



������

������

	�

	�
	�

	


	�

	�


��

������

������

	�

	�
	�

	


	�

	�
�


��

������

������

	�

	�
	�

	


	�

	�
�


��

Figure 3. Example of algorithm execution

though there are 270 links in all, only less than 10% are local
constrains. For each agent, there exist only two or three local
constraints. Since a local problem of each agent should be a
meaningful cluster of variables, it is natural to assume that
local constraints should be at least as tight as inter-agent con-
straints. Therefore, we are going to assign half of the links to
local constraints, and another half to inter-agent constraints.
We randomly generate a problem with these parameter set-
tings using the method described in [10], so that the graph is
connected and the problem has a solution. The initial value
of each variable is determined randomly.

To conduct the experiments within a reasonable amount
of time, we limited the number of cycles to 10000 for each
trial, and terminated the algorithm if this limit was exceeded;
we counted the result as 10000. We show the ratio of tri-
als successfully completed to the total number of trials in
the table. Furthermore, to obtain an idea of how much lo-
cal computation is performed, we measure the number of
consistency checks. Namely, for each cycle, we select an
agent that performs the most consistency checks (a bottle-
neck agent for each cycle), and show the summation of con-
sistency checks for these bottleneck agents.

The following facts can be derived from these results.

� For all parameter settings in our experiments, multi-
AWC outperforms single-AWC and AWC+AP (both
in the number of required cycles and the number of
consistency checks), and this becomes greater as the
size of local problems or the number of agents in-
creases.

� The number of required cycles for multi-AWC is
smaller than for single-AWC, since in multi-AWC,
agents communicate only when they find consistent
local solutions. On the other hand, in single-AWC,
each agent simply simulates the activities of multi-
ple virtual agents, and agents communicate even if
the values of the virtual agents within a single real
agent are not consistent with the others. Although
the number of consistency checks for each cycle in
single-AWC is smaller than that of multiple-AWC, it
never compensates for the increase in the number of
required cycles.

� The number of required cycles for multi-AWC is
smaller than for AWC+AP. At first glance, this result
seems somewhat surprising, since in AWC+AP, each
agent is so diligent that it exhaustively searches for
its local problem to find a local solution consistent
with higher priority agents, while in multi-AWC, each
agent is rather lazy and tries to increase the priority
values of its variables instead of trying to satisfy con-
straints with higher priority variables. However, in re-
ality, diligently trying to find a consistent local solu-
tion with higher priority agents should not necessar-
ily be good for agents as a whole. While the consis-
tent local solution satisfies all constraints with higher
priority agents, it may violate many constraints with
lower priority agents. Therefore, the convergence to
a global solution can be slower than with multi-AWC,
where each agent simply increases the priority values



Table 1. Evaluation by varying the number of variables per agent n=m (k = 3; l = 2:7� n;m = 10)
multi-AWC AWC+AP single-AWC

n=m ratio cycles checks ratio cycles checks ratio cycles checks
5 100% 26.9 2989.6 100% 35.9 3617.6 100% 323.0 13630.7

10 100% 89.5 22481.2 100% 577.7 155026.1 79% 4713.0 369195.0
15 100% 189.5 87688.8 79% 3951.8 1978801.9 14% 9083.4 1031475.1
20 100% 488.1 320312.6 37% 7529.6 6691615.5 0% — —

Table 2. Evaluation by varying the number of agents m (k = 3; l = 2:7� n, n=m = 10)
multi-AWC AWC+AP single-AWC

m ratio cycles checks ratio cycles checks ratio cycles checks
10 100% 89.5 22481.2 100% 577.7 155026.1 79% 4713.0 369195.0
15 100% 214.7 62049.3 90% 3039.2 888422.6 10% 9573.6 779022.9
20 100% 615.6 190718.2 54% 6568.1 2083577.1 0% — —

of their variables, then tries to minimize the number
of constraint violations as a whole.

Figure 4 shows the trace of the number of constraint
violations when solving one problem instance with 10
agents, 10 variables. We can see that reducing the
total number of constraint violations becomes rather
difficult if agents devote too much energy to satisfy-
ing constraints with higher priority agents.

If each agent tries to find a consistent local solution
that not only satisfies all constraints with higher pri-
ority agents, but also minimizes the number of con-
straint violations with lower priority agents, the con-
vergence to a global solution can be hastened. How-
ever, it requires too many computations for an agent.
Note that although each agent uses the min-conflict
backtracking in AWC+AP, there is no guarantee that
the obtained local solution minimizes the number of
constraint violations with lower priority agents.

� In [1], more sophisticated heuristics for prioritization
among agents are presented. However, the evalu-
ation results in [1] show that the speedup obtained
by employing these heuristics are not very drastic (at
most two-fold) compared with the simple decaying
nogoods heuristic used in AWC+AP. Therefore, we
cannot assume that AWC+AP will outperform multi-
AWC by employing more sophisticated prioritization
heuristics when local problems are large.

Figure 4. Traces of No. of constraint viola-
tions



5 Conclusions

In this paper, we developed a new algorithm that can effi-
ciently solve a distributed CSP, in which each agent has mul-
tiple local variables. This algorithm is based on the asyn-
chronous weak-commitment search algorithm for the case
of a single local variable, but an agent sequentially performs
the computation for each variable, and communicates with
other agents only when it can find a local solution (which
satisfies all local constraints). By using this algorithm, a bad
local solution can be modified without forcing other agents
to exhaustively search their local solutions, and the num-
ber of interactions among agents can be decreased. Exper-
imental evaluations showed that this algorithm is far more
efficient than the algorithm that employs the prioritization
among agents, or a simple extension of the asynchronous
weak-commitment search algorithm for the case of a single
local variable.

Acknowledgments

The authors wish to thank Koichi Matsuda and Fumio
Hattori for their supports in this work.

References

[1] A. Armstrong and E. Durfee. Dynamic prioritization of com-
plex agents in distributed constraint satisfaction problems. In
Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 620–625, 1997.

[2] K. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Trans. on
Computer Systems, 3(1):63–75, 1985.

[3] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really
hard problems are. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, pages 331–
337, 1991.

[4] Z. Collin, R. Dechter, and S. Katz. On the feasibility of
distributed constraint satisfaction. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelli-
gence, pages 318–324, 1991.

[5] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer.
Multistage negotiation for distributed constraint satisfac-
tion. IEEE Transactions on Systems, Man and Cybernetics,
21(6):1462–1477, 1991.

[6] K. Hirayama and J. Toyoda. Forming coalitions for breaking
deadlocks. In Proceedings of the First international Confer-
ence on Multiagent Systems, pages 155–162, 1995.

[7] M. N. Huhns and D. M. Bridgeland. Multiagent truth mainte-
nance. IEEE Transactions on Systems, Man and Cybernetics,
21(6):1437–1445, 1991.

[8] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro,
editor, Encyclopedia of Artificial Intelligence, pages 285–
293. Wiley-Interscience Publication, New York, 1992.

[9] C. Mason and R. Johnson. DATMS: A framework for dis-
tributed assumption based reasoning. In L. Gasser and
M. Huhns, editors, Distributed Artificial Intelligence vol.II,
pages 293–318. Morgan Kaufmann, 1989.

[10] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Mini-
mizing conflicts: a heuristic repair method for constraint sat-
isfaction and scheduling problems. Artificial Intelligence,
58(1–3):161–205, 1992.

[11] K. P. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed
constrained heuristic search. IEEE Transactions on Systems,
Man and Cybernetics, 21(6):1446–1461, 1991.

[12] M. Yokoo. Asynchronous weak-commitment search for
solving distributed constraint satisfaction problems. In Pro-
ceedings of the First International Conference on Princi-
ples and Practice of Constraint Programming (Lecture Notes
in Computer Science 976), pages 88–102. Springer-Verlag,
1995.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed
problem solving. In Proceedings of the Twelfth IEEE In-
ternational Conference on Distributed Computing Systems,
pages 614–621, 1992.

[14] M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction prob-
lems. In Proceedings of the Second International Conference
on Multi-Agent Systems, pages 401–408. MIT Press, 1996.

[15] Y. Zhang and A. Mackworth. Parallel and distributed algo-
rithms for finite constraint satisfaction problems. In Pro-
ceedings of the Third IEEE Symposium on Parallel and Dis-
tributed Processing, pages 394–397, 1991.


