
Proceedings of the Fourth International Conference on Multi-Agent Systems (ICMAS-2000), pp.135–142

An Approach to Over-constrained Distributed Constraint Satisfaction Problems:
Distributed Hierarchical Constraint Satisfaction∗

Katsutoshi Hirayama
Kobe University of Mercantile Marine

5-1-1 Fukae-minami-machi, Higashinada-ku,
Kobe 658-0022, JAPAN

hirayama@ti.kshosen.ac.jp
http://jos2.ti.kshosen.ac.jp/˜hirayama/

Makoto Yokoo
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun,
Kyoto 619-0237, JAPAN

yokoo@cslab.kecl.ntt.co.jp
http://www.kecl.ntt.co.jp/csl/ccrg/members/yokoo/

Abstract

Many problems in multi-agent systems can be described
as distributed CSPs. However, some real-life problem can
be over-constrained and without a set of consistent vari-
able values when described as a distributed CSP. We have
presented the distributed partial CSP for handling such an
over-constrained situation and the distributed maximal CSP
as a subclass of distributed partial CSP. In this paper, we
first show another subclass of distributed partial CSP, the
distributed hierarchical CSP. Next, we present a series of
new algorithms for solving a distributed hierarchical CSP,
each of which is designed based on our previous distributed
constraint satisfaction algorithms. Finally, we evaluate
the performance of our new algorithms on distributed 3-
coloring problems in terms of optimality and anytime char-
acteristics. The results show that our new algorithms per-
form much better than the previous algorithm for finding
an optimal solution and produce good results for anytime
characteristics.

1. Introduction

In multi-agent systems (MAS), we sometimes face a
problem where multiple agents have to find a consistent
combination of actions under some constraints about taking
their actions. Such a problem includes the distributed in-
terpretation problem [6], the distributed resource allocation
problem [2], the distributed scheduling problem [9], and the
problem in multi-agent truth maintenance tasks [5]. These

∗ c©2000 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

problems are naturally described as distributed constraint
satisfaction problems (distributed CSPs) [12, 13]. A dis-
tributed CSP is a constraint satisfaction problem where vari-
ables and constraints are distributed among multiple agents.
A solution to a distributed CSP is a set of values to dis-
tributed variables that satisfies all distributed constraints.

Previous algorithms for finding a solution to a distributed
CSP can provide a solution if one exists, but none of them
succeeds to provide useful information if no solution exists.
For example, a complete algorithm like the asynchronous
backtracking algorithm [12, 13] just reports the fact that
there is no solution, and an incomplete algorithm like the
distributed breakout algorithm [14] never terminates. How-
ever, in many application problems in MAS, we sometimes
face a situation where we would like to get some partial so-
lution instead of such “useless” information.

We have presented the distributed partial CSP as a
general model for handling over-constrained distributed
CSPs [4]. Intuitively, in the distributed partial CSP, agents
search for a solvable distributed CSP and its solution by re-
laxing an over-constrained distributed CSP. By determining
the way of relaxing a distributed CSP, we can introduce var-
ious partial solutions to a distributed CSP.

The distributed maximal CSP [4] can be seen as a sub-
class of distributed partial CSP. In the distributed maximal
CSP, agents search for variable values that minimize the
maximal number of violated constraints over agents. As
discussed in [4], the distributed maximal CSP is one of
promising approaches to over-constrained distributed CSPs.
However, not all problems are necessarily suitable for the
distributed maximal CSP.

Thus, we are going to introduce another approach, the
distributed hierarchical CSP. A distributed hierarchical
CSP is the problem where agents try to find variable values
that minimize the maximum importance value of violated
constraints over agents. We believe such a partial solution

1



is important because there are problems in MAS where each
agent wants to get a (partial) solution that doesn’t violate its
important constraints (for example, calendar time-tabling in
which multiple agents are concerned).

In this paper, we first show the definition of distributed
hierarchical CSP and then present a series of new algo-
rithms for solving a distributed hierarchical CSP. These al-
gorithms are developed based on our previous distributed
constraint satisfaction algorithms [16]. Finally, we evalu-
ate the performance of our new algorithms on distributed 3-
coloring problems in terms of optimality and anytime char-
acteristics.

This paper is organized as follows. We first provide the
definition of distributed CSP in section 2, and the definition
of distributed partial CSP in section 3. Next, in section 4,
we introduce the distributed hierarchical CSP as another
subclass of distributed partial CSP. In sections 5 and 6, we
present new algorithms for solving a distributed hierarchi-
cal CSP and evaluate the performance of these algorithms.
Finally, we conclude our discussion in section 7.

2. Distributed CSP

A CSP consists of a set of variables and a set of con-
straints among variables. A variable has a finite and discrete
domain, that is, a set of possible values for the variable. A
constraint can be described as a set of values for some vari-
ables that is prohibited for the variables (such a set is called
nogood). A solution to a CSP is a set of values for all vari-
ables violating no constraints. The goal of CSP is to find a
solution.

A distributed CSP is a CSP where variables and con-
straints are distributed among multiple agents. It consists
of:

• a set of agents, A = {1, 2, . . . , l}
• a set of CSPs, P = {P1, P2, . . . , Pl}, such that Pi be-

longs to agent i (1 ≤ i ≤ l).

We usually assume that every agent’s CSP includes inter-
agent constraints, which are defined over variables of mul-
tiple agents. A solution to a distributed CSP is a set of so-
lutions to all agents’ CSPs. The goal of distributed CSP is
also to find a solution.

We would like to stress that you should not confuse the
distributed CSP with a method for solving a CSP in a dis-
tributed/parallel manner. If you want to solve a CSP in a
distributed/parallel manner, you can choose any distribu-
tion of problems. On the other hand, since the distributed
CSP is a framework for handling a MAS application prob-
lem, where multiple agents exist and have requirements for
solving their local problems, the distribution of problems is
given in advance.

3. Distributed partial CSP

We have presented the distributed partial CSP as a
general model for handling over-constrained distributed
CSPs [4]. In the distributed partial CSP, agents try to search
for a solvable distributed CSP and its solution by relaxing
an original over-constrained distributed CSP. How much an
original problem is relaxed is measured by a globally de-
fined function (global distance function). Agents prefer the
problem closer to an original problem, and in some case
they may want to make the relaxation minimal.

The distributed partial CSP can be formalized using the
terms of partial CSP [3]. It consists of the following com-
ponents:

• a set of agents, A = {1, 2, . . . , l}
• a set of partial CSPs, PP = {PP1, PP2, . . . , PPl},

such that PPi belongs to agent i and PPi =
〈(Pi, Ui), (PSi,≤),Mi〉 (1 ≤ i ≤ l)

• (G, (N,S))

For each agent i, Pi is an original CSP (a part of an origi-
nal distributed CSP), and Ui is a set of universes, i.e., a set
of potential values for each variable in Pi

1. Furthermore,
(PSi,≤) is called a problem space, where PSi is a set of
(relaxed) CSPs including Pi, and ≤ is a partial order over
PSi. Also, Mi is a locally-defined distance function over
the problem space. G is a global distance function over
distributed problem spaces, and (N,S) are necessary and
sufficient bounds on the global distance between an original
distributed CSP (a set of Pis of all agents) and some solv-
able distributed CSP (a set of solvable CSPs of all agents,
each of which comes from PSi).

A solution to a distributed partial CSP is a combination
of a solvable distributed CSP and its solution, where the
global distance between an original distributed CSP and the
solvable distributed CSP is less than the necessary bound
N . Any solution to a distributed partial CSP will suffice
if the global distance between an original distributed CSP
and the solvable distributed CSP is not more than the suffi-
cient bound S. An optimal solution to a distributed partial
CSP is a solution in which the global distance between an
original distributed CSP and the solvable distributed CSP is
minimal. We call such a minimal global distance an optimal
global distance.

4. Distributed hierarchical CSP

We have introduced the distributed maximal CSP by spe-
cializing the components in the above model [4]. In the dis-
tributed maximal CSP, agents try to find variable values that

1By introducing a universe for each variable, problem relaxation can be
expressed in terms of removing constraints [3].

2



minimize the maximal number of violated constraints over
agents. We believe that the distributed maximal CSP can
provide an useful partial solution to an over-constrained dis-
tributed CSP, but in some application problems you might
want to get completely different partial solutions. Thus, we
are going to introduce another subclass of distributed partial
CSP, the distributed hierarchical CSP.

In the distributed hierarchical CSP, we assume that each
constraint is labeled a positive integer called importance
value, which represents an importance of the constraint, and
a constraint with a larger importance value is considered
more important. We believe this assumption is quite reason-
able because a constraint in the real world has some mean-
ing that allows us to introduce such an importance value.

In the distributed hierarchical CSP, agents try to find
variable values that minimize the maximum importance
value of violated constraints over agents. We believe this
type of partial solution is useful because it can be a reason-
able compromise when each agent tries to satisfy as many
constraints with large importance values as possible. To
put it formally, solving a distributed hierarchical CSP cor-
responds to finding an optimal solution to the distributed
partial CSP specialized by the following.

• For each agent i, PSi is made up of {P 0
i , P 1

i , P 2
i , . . .},

where Pα
i is a CSP that is obtained from the original

CSP Pi by removing every constraint with an impor-
tance value of α or less.

• For each agent i, a distance di between Pi and Pα
i is

defined as α.

• A global distance is measured as maxi∈A di.

We will show an example of distributed hierarchical CSP
by using the distributed 2-coloring problem in figure 1. In
this figure, a node represents a variable and an agent that
has the variable, and an edge represents constraints, which
mean that two nodes connected by the edge must be painted
in different colors (black or white)2. An agent knows only
the constraints that are relevant to its variable. For example,
agent 2 knows only the constraints that correspond to the
edges {a, b, e, f}. Assuming the importance value of each
constraint given by the number in parentheses3, agent 2’s
partial CSP, for example, is:

• P2: variable 2 and constraints {a, b, e, f};

• PS2: a set of the following CSPs:

2An edge actually represents two constraints, one of which prohibits
(black, black) and the other prohibits (white, white), for two nodes con-
nected by the edge.

3In this example, we assume that two constraints for an edge has the
same importance value. That doesn’t mean we eliminate the possibility of
defining different importance values for these two constraints.

1 2 3

4 5 6

a(

 

2

 

) b(

 

3

 

)

c(

 

3

 

) d(

 

1

 

)
e(

 

3

 

) f(

 

1

 

) g(

 

3

 

)

h(

 

2

 

) i(

 

3

 

)

Figure 1. Distributed 2-coloring problem

– P 0
2 : P2,

– P 1
2 : variable 2 and constraints {a, b, e},

– P 2
2 : variable 2 and constraints {b, e},

– P 3
2 : variable 2 and no constraint;

• M2(P2, P
α
2 ) = α, (α = 0, 1, 2, 3).

This example doesn’t have a solution for a global dis-
tance of zero (an original problem). It does, however, have
a solution for a global distance of one since a solvable dis-
tributed CSP is obtained if agents remove the constraints
that correspond to d and f, which have one as their impor-
tance values. Thus, the optimal global distance of this ex-
ample is one.

5. Algorithms

We are going to develop new algorithms for solving
a distributed hierarchical CSP by using our previous dis-
tributed constraint satisfaction algorithms [16]. The basic
idea is very simple. We divide a search process into two
parts, i.e., value space search and problem space search. In
the value space search, agents try to find a solution to some
distributed CSP. We will use distributed constraint satisfac-
tion algorithms for the value space search. On the other
hand, in the problem space search, agents try to find a solv-
able distributed CSP from their distributed problem spaces.
We will present heuristic methods for the problem space
search. Our new algorithms are based on possible combi-
nations of the value space search and the problem space
search.

5.1. Distributed constraint satisfaction algorithm

A simple way of realizing the value space search is
to use one of our previous distributed constraint satisfac-
tion algorithms [16], such as the asynchronous backtrack-
ing algorithm [12, 13], the asynchronous weak-commitment
search algorithm [11, 13] or the distributed breakout algo-
rithm [14].

3



5.1.1. Asynchronous backtracking algorithm. The asyn-
chronous backtracking algorithm (ABT) is basically de-
signed for a distributed CSP where each agent has one
variable. In this algorithm, a priority value is defined for
each agent, and agents change their variable values asyn-
chronously and concurrently while sending their local in-
formation via ok? messages and nogood messages. An
agent sends ok? messages to announce its current variable
value to other agents. When receiving an ok? message, an
agent tries to find a value to its variable that is consistent
with higher priority agents. If such a consistent value is
found, the agent changes its variable value and sends the
new value to neighbors (a set of agents who share inter-
agent constraints) via ok? messages. If such a consistent
value is not found, the agent creates a nogood (a set of vari-
able values of higher priority agents) and sends the nogood
to the relevant agent via a nogood message. A nogood is a
new constraint under which some agent cannot find a con-
sistent variable value. When receiving a nogood message,
an agent records the nogood as a new constraint and tries to
satisfy it hereafter. By recording all nogoods, ABT is guar-
anteed to be complete, i.e., it finds a solution if one exists
or terminates if none exists.

One drawback of ABT is that a high priority agent tends
to have a strong commitment to its variable value. There-
fore, if a high priority agent selects a wrong value to its
variable, lower priority agents have to perform exhaustive
search to revise that wrong value.

5.1.2. Asynchronous weak-commitment search algo-
rithm. The asynchronous weak-commitment search al-
gorithm (AWC) is an enhancement of ABT, where agents
change their priority values dynamically so that a high pri-
ority agent does not have a strong commitment to a wrong
variable value. In AWC, an agent uses ok? and nogood
messages and follows a similar procedure to that of ABT
when receiving these messages. A major difference is that
when receiving an ok? message, if an agent cannot find a
value to its variable that is consistent with variable values of
higher priority agents, the agent not only creates and sends a
nogood, but also increases its priority value to make it max-
imum among neighbors. By increasing a priority value in
this way, a wrong variable value of a high priority agent can
be revised without performing exhaustive search by lower
priority agents.

AWC is efficient and guaranteed to be complete by
recording all nogoods. However, it suffers from a nogood
explosion, i.e., the number of nogoods grows rapidly and
thus the cost of checking nogoods can be very expensive.
ABT clearly has the same drawback as well, but such an
explosion can be more serious in AWC because an agent
in AWC may create nogoods for all neighbors; an agent in
ABT, on the other hand, only creates nogoods for higher

priority agents.
In both ABT and AWC, an agent cannot detect the fact

that every agent reaches the state where all constraints are
satisfied. We thus need to use a snapshot algorithm like that
in [1] at certain intervals so that an agent can detect that
fact.

5.1.3. Distributed breakout algorithm. The distributed
breakout algorithm (DB) is a concurrent hill-climbing algo-
rithm incorporated with the breakout method [8] for solv-
ing a distributed CSP where each agent has one variable. In
DB, a weight is defined for each constraint, and for each
value to a variable an evaluation is measured as the sum-
mation of the weights of violated constraints. Agents use
ok? and improve messages for exchanging their local in-
formation. An ok? message is used to send a current vari-
able value, and an improve message is used to send possi-
ble improvement in the evaluation of variable value. When
receiving ok? messages from all neighbors, an agent calcu-
lates the evaluation of a current variable value and its pos-
sible maximal improvement and sends them to neighbors
via improve messages. When receiving improve messages
from all neighbors, an agent compares each of their possible
maximal improvements with its own one. If one of their im-
provements is greater than its own one, the agent will skip
taking an action and stay unchanged. On the other hand, if
its own improvement is the greatest among them, the agent
will take an action: changing its variable value if that can re-
duce its current evaluation or increasing weights of violated
constraints if any change of variable value cannot reduce its
current evaluation. Note that ties in improvement compari-
son are broken deterministically by comparing agent iden-
tifiers. After taking the action (or no action), an agent sends
its current variable value to neighbors via ok? messages.

According to our experimental evaluation, DB is very
efficient especially for critically hard instances with solu-
tions [14]. However, it is not a complete algorithm, that is,
it may fail to find a solution even if one exists, and it never
finds the fact that there is no solution.

5.2. Distributed hierarchical constraint satisfaction
algorithm

In the distributed hierarchical CSP, CSPs in an agent’s
problem space can be totally ordered in terms of the degree
of relaxation. In this paper, we are going to utilize the total
order over a problem space and present two heuristic meth-
ods for the problem space search. Both are very simple.
One is the method where an agent tries CSPs in its problem
space from the most restricted one to the most relaxed one
(the removing scheme), and the other is the method where
an agent tries vice versa (the adding scheme).

With those methods for the value space search and the

4



problem space search, we will combine those methods as
follows:

• ABT from restricted to relaxed (ABT/rm)

• ABT from relaxed to restricted (ABT/ad)

• AWC from restricted to relaxed (AWC/rm)

• AWC from relaxed to restricted (AWC/ad)

• DB from relaxed to restricted (DB/ad)

Before going into the details of these algorithms, we first
define a distributed CSP at level α as a distributed CSP that
consists of CSPs with distance α. Such a problem can be
obtained by making each agent choose a CSP with a dis-
tance α (a CSP with every constraint with an importance
value of α or less removed) from its problem space.

5.2.1. ABT/rm. ABT/rm is the same as the constraint-
relaxation method in [10]. As with this method, ABT/rm
applies ABT to each level of a distributed CSP in the or-
der from the level zero, an original distributed CSP, to the
maximal level. More specifically, ABT/rm repeats the fol-
lowing: from level α = 0 to the maximal level, a) run ABT
for a distributed CSP at level α; b.1) if there is no solu-
tion to the problem, move to level α + 1 (i.e., relaxing the
problem); or b.2) if there is a solution, report the current dis-
tributed CSP and its consistent set of variable values as an
optimal solution to a distributed hierarchical CSP, and then
terminate.

Since ABT/rm gradually relaxes a problem by remov-
ing constraints, some nogoods created at the previous levels
may become obsolete. To remove such an obsolete nogood,
we must keep constraints that originate a created nogood
and remove the nogood if one of these constraints is re-
moved when a problem is relaxed.

5.2.2. ABT/ad. While ABT/rm searches a problem space
from the most restricted one to the most relaxed one,
ABT/ad takes the opposite strategy. It repeats: from level
α = the maximal level to zero, a) run ABT for a distributed
CSP at level α; b.1) if there is a solution, record it and move
to level α − 1 (i.e., restricting the problem); or b.2) if there
is no solution, report the solution of the previous level as an
optimal solution to a distributed hierarchical CSP, and then
terminate.

Since ABT/ad gradually restricts a problem by adding
constraints, nogoods created at the previous levels are all
valid throughout the algorithm execution. Thus, in contrast
to ABT/rm, we do not need to keep constraints that origi-
nate a created nogood.

5.2.3. AWC/rm and AWC/ad. AWC/rm and ABT/rm are

essentially the same. A difference is that we use AWC in-
stead of ABT in AWC/rm. The same is true for the relation-
ship between AWC/ad and ABT/ad.

5.2.4. DB/ad. DB/ad repeatedly applies DB from the most
relaxed one to the most restricted one. However, unlike the
other algorithms, DB/ad is not complete, that is, it may fail
to find an optimal solution to a distributed hierarchical CSP
because DB may fail to find a solution to a distributed CSP
at a certain level.

Note that DB/rm, DB from restricted to relaxed, is not
feasible because DB is unable to identify an insoluble dis-
tributed CSP that could be used as a chance to relax a prob-
lem.

6. Evaluation

We evaluated the performance of these algorithms
through experiments on distributed 3-coloring problems. In
these experiments, a distributed 3-coloring problem was ob-
tained by generating a 3-coloring problem with m edges
(3m constraints) and n nodes (n variables) and distributing
them so that each agent has one node and the edges that are
connected to the node.

The algorithms were implemented on a simulator of syn-
chronous distributed system, a typical model of distributed
system, on which every agent synchronously performs the
following cycle.

1. Receive all the messages which were sent toward the
agent at the previous cycle.

2. Perform local computation to change its internal state
and determine the contents of messages, and send
these messages to other agents.

Note that at first cycle an agent does not receive any mes-
sages, but it does perform local computation and send mes-
sages to other agents. Using this simulator, we evaluated the
performance of algorithms in terms of the number of cycles.

6.1. Experiment on small-sized instances

We first made an experiment on small-sized instances
to measure the number of cycles that complete algorithms
(ABT/rm, ABT/ad, AWC/rm, and AWC/ad) consume until
they find an optimal solution. We used four classes of dis-
tributed 3-coloring problems: problems with 348 edges and
30 nodes, 174 edges and 30 nodes, 87 edges and 30 nodes,
and 65 edges and 30 nodes, and generated 10 instances for
each class. We selected these classes based on the results
of our preliminary experiment to locate an optimal global
distance.

5



Table 1. Average cycle to find an optimal solution.
algorithm 348 edges 30 nodes 174 edges 30 nodes 87 edges 30 nodes 65 edges 30 nodes

% cycle % cycle % cycle % cycle
ABT/rm 0 − 0 − 0 − 0 −
ABT/ad 0 − 0 − 0 − 0 −
AWC/rm 100 1646.7 100 2409.0 100 2316.0 100 841.5
AWC/ad 100 462.8 100 528.6 100 1207.1 100 717.2

In generating an instance, we first built a spanning tree
and randomly added edges to the tree to ensure graph con-
nectivity, and a random integer with a uniform distribution
of 1 to 10 was assigned to each edge as its importance
value4. By this method, an optimal global distance lies on
8–9 for problems with 348 edges and 30 nodes, 6–8 for
problems with 174 edges and 30 nodes, 2–5 for problems
with 87 edges and 30 nodes, and 0–2 for problems with 65
edges and 30 nodes. For each instance, a complete algo-
rithm made 10 trials with randomly generated different sets
of initial variable values. We set the bound for the num-
ber of cycles at 10000 and terminated a trial if an algorithm
fails to find an optimal solution within the bound. Such a
trial was counted as 10000 cycle.

Table 1 shows for each of four classes of problems, the
number of cycles consumed until each algorithm finds an
optimal solution (averaged over 100 trials, i.e., 10 instances
with 10 trials) and the percentage of times each algorithm
completed within the bound. These results indicate:

• ABT/rm (the constraint-relaxation method in [10]) and
ABT/ad perform very poorly for all instances. This is
due to inefficiency of ABT as the value space search.

• AWC/rm is more expensive than AWC/ad. This is be-
cause AWC generally works poorly in detecting an
insoluble problem due to its poor ability in nogood
recording. AWC/rm continues to deal with such in-
soluble problems until it finds an optimal solution, and
thus its performance deteriorates.

• For problems with 65 edges and 30 nodes, the differ-
ence between AWC/rm and AWC/ad is not so large in
terms of average cycle. This is because for some in-
stance with a low optimal global distance, AWC/rm
can be better because it starts from the original dis-
tributed CSP toward the relaxed ones and thus finding
an optimal solution with such a low optimal global dis-
tance very easily.

Figure 2 shows a typical anytime curve for AWC/ad for
an instance of problems with 65 edges and 30 nodes. An

4Namely, three constraints that correspond to one edge have the same
importance value in this experiment.

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

AWC/ad

gl
ob

al
 d

is
ta

nc
e

Cycle

Figure 2. Anytime curve for an instance of
problems with 65 edges and 30 nodes (aver-
aged over 10 trials).

anytime curve illustrates how a global distance of the best
solution found so far is improved as time proceeds. A curve
in figure 2 is averaged over 10 trials. Note that the removing
scheme algorithm, such as ABT/rm or AWC/rm, cannot ob-
tain any solution until it finds an optimal solution because
it starts from a tight and usually insoluble distributed CSP.
However, the adding scheme algorithm proceeds while get-
ting a series of non-optimal solutions and thus being able
to provide a nearly-optimal solution while searching for an
optimal solution.

6.2. Experiment on large-sized instances

For large-sized instances, the performance of the above
algorithms becomes very poor since each of these algo-
rithms searches for an optimal solution. It seems reason-
able to assume that we should aim at a nearly-optimal so-
lution instead of an optimal solution. Accordingly, the any-
time characteristics may be important. As we showed in the
experiment on small-sized instances, the removing scheme
algorithms are not appropriate in terms of the anytime char-
acteristics, and thus, in this experiment, we used only the
promising adding scheme algorithms, AWC/ad and DB/ad,
to compare their performance.

6



Table 2. Average cycle to find a solution to the problem at the level 6.
algorithm 180 + 243 edges 243 + 243 edges 240 + 324 edges 324 + 324 edges

90 nodes 90 nodes 120 nodes 120 nodes
% cycle % cycle % cycle % cycle

AWC/ad 100 121.5 100 2337.8 100 176.7 93 14299.5
DB/ad 100 235.6 99 3608.8 100 299.5 99 2670.3

In this experiment, we didn’t use nogood recording in
AWC/ad because nogood recording can be computationally
expensive especially for large-sized instances. Fortunately,
without nogood recording, AWC has the way to break a
deadend, i.e., changing priorities among agents, and thus
being able to find a solution to a solvable distributed CSP
in many cases. This means that, without nogood recording,
AWC/ad is feasible even if it loses its completeness.

We made an experiment on distributed 3-coloring prob-
lems with m = 2n + 2.7n and m = 2.7n + 2.7n (m: the
number of edges, n: the number of nodes). The former
includes difficult instances for DB, and the latter does for
AWC [14]. The values of n were 90 and 120 in this experi-
ment. An instance was generated such that, for each n,

1. create 2n or 2.7n edges by the method described in [7]
(that produces a solvable 3-coloring problem with a
connected graph), each of which is labeled by a ran-
dom integer with a uniform distribution of 6 to 10 as
its importance value.

2. add 2.7n edges randomly, each of which is labeled by
a random integer with a uniform distribution of 1 to 5
as its importance value.

This method ensures that every distributed CSP at more
than the 5 level has a solution, and thus an optimal solution
is located at not more than the 5 level. It also ensures that
there is a hard solvable distributed CSP between the lev-
els 6 and 10. Thus, the adding scheme algorithm definitely
confronts some hard distributed CSP on the way from the
maximal level to the optimal level. We evaluated the perfor-
mance of algorithms by how quickly they go through these
hard and solvable levels.

Table 2 shows for each class of problems, the number
of cycles consumed until each algorithm finds a solution to
a distributed CSP at the level 6 after starting with the one
at the level 10 (averaged over 100 trials, i.e., 10 instances
with 10 trials). Each trial started with randomly chosen ini-
tial variable values and was terminated if it fails to find a
solution to the problem at the level 6 within 50000 cycle.
This table also shows the percentage of times an algorithm
successfully found a solution to the problem at the level 6
within the bound. From these results, we can see the fol-
lowing:

• DB/ad is effective for 324 + 324 edges and 120 nodes
while AWC/ad is effective for other problems. We sup-
pose that this is due to the properties of AWC and
DB. DB is more efficient than AWC for solvable in-
stances of m = 2.7n (especially when n is large);
on the other hand, AWC is more efficient than DB for
those of m = 2n. Thus, DB/ad can move more quickly
among these levels of distributed CSPs (the level 10 to
6) while it efficiently finds a solution to a certain level
of distributed CSP for 324+324 edges and 120 nodes;
on the other hand, AWC/ad can do for 180+243 edges
and 90 nodes and 240 + 324 edges and 120 nodes.

• For 243 + 243 edges and 90 nodes, DB/ad sometimes
works very poorly and as a result being worse than
AWC/ad in terms of average cycle. This result is unex-
pected for us because DB is more efficient than AWC
for solvable distributed CSP with m = 2.7n. We con-
jecture that the performance of DB may sometimes de-
teriorate for very “sparse” problems on the way to the
problem at the level 6.

• In spite of no guarantee of finding a solution to the
problem at the level 6, most trials are successfully
completed by AWC/ad and DB/ad. On the other hand,
ABT/ad (not in table 2) does have such guarantee, but
more cycles are consumed than AWC/ad or DB/ad.
Furthermore, ABT/ad (and AWC/ad combined with
nogood recording) is computationally expensive be-
cause agents need to check all recorded nogoods.

7. Conclusions

We have presented the distributed hierarchical CSP to
give another partial solution to an over-constrained dis-
tributed CSP and a series of new algorithms for solving a
distributed hierarchical CSP. This class of problem is im-
portant since a real-life problem in MAS can be easily over-
constrained when described as a distributed CSP. We be-
lieve that a partial solution provided by the distributed hi-
erarchical CSP can be one promising solution for an over-
constrained situation.

The algorithms presented in this paper are combina-
tions of our previous distributed constraint satisfaction algo-
rithms and the simple problem space search methods. One

7



may feel that these algorithms are so straightforward that
they would need more sophisticated techniques especially
for the problem space search. However, we believe the
problem space search should be simple because the search
cost in a problem space is very high.

All the algorithms in this paper are for an over-
constrained distributed CSP where each agent has one vari-
able because we use distributed constraint satisfaction al-
gorithms designed for such a problem as the value space
search. However, by using the algorithm presented in [15]
as the value space search, we can easily extend our algo-
rithms so that they can handle a problem where each agent
has multiple local variables. Our future work will include
evaluating the performance of those extended algorithms.

References

[1] K. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Transac-
tion on Computer Systems, 3(1):63–75, 1985.

[2] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer.
Multistage negotiation for distributed constraint satisfac-
tion. IEEE Transactions on Systems, Man and Cybernetics,
21(6):1462–1477, 1991.

[3] E. C. Freuder and R. J. Wallace. Partial constraint satisfac-
tion. Artificial Intelligence, 58(1–3):21–70, 1992.

[4] K. Hirayama and M. Yokoo. Distributed partial constraint
satisfaction problem. In G. Smolka, editor, Principles and
Practice of Constraint Programming –CP97, volume 1330
of Lecture Notes in Computer Science, pages 222–236.
Springer-Verlag, 1997.

[5] M. N. Huhns and D. M. Bridgeland. Multiagent truth main-
tenance. IEEE Transactions on Systems, Man and Cybernet-
ics, 21(6):1437–1445, 1991.

[6] V. R. Lesser and D. D. Corkill. The distributed vehicle mon-
itoring testbed: A tool for investigating distributed problem
solving networks. AI Magazine, 4(3):15–33, 1983.

[7] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Min-
imizing conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems. Artificial Intelligence,
58(1–3):161–205, 1992.

[8] P. Morris. The breakout method for escaping from local min-
ima. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 40–45, 1993.

[9] K. P. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed
constrained heuristic search. IEEE Transactions on Systems,
Man and Cybernetics, 21(6):1446–1461, 1991.

[10] M. Yokoo. Constraint relaxation in distributed constraint
satisfaction problem. In Proceedings of the 5th International
Conference on Tools with Artificial Intelligence, pages 56–
63, 1993.

[11] M. Yokoo. Asynchronous weak-commitment search for
solving distributed constraint satisfaction problems. In Prin-
ciples and Practice of Constraint Programming –CP95, vol-
ume 976 of Lecture Notes in Computer Science, pages 88–
102. Springer-Verlag, 1995.

[12] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed
problem solving. In Proceedings of the 12th IEEE Interna-
tional Conference on Distributed Computing Systems, pages
614–621, 1992.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: formalization
and algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

[14] M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction prob-
lems. In Proceedings of the Second International Confer-
ence on Multi-Agent Systems, pages 401–408, 1996.

[15] M. Yokoo and K. Hirayama. Distributed constraint satisfac-
tion algorithm for complex local problems. In Proceedings
of the Third International Conference on Multi-Agent Sys-
tems, pages 372–379, 1998.

[16] M. Yokoo and K. Hirayama. Algorithms for distributed
constraint satisfaction: A review. Autonomous Agents and
Multi-agent Systems, 3(2):189–211, 2000.

8


