
An α-approximation Protocol for the Generalized Mutual Assignment Problem

Katsutoshi Hirayama
Kobe University

5-1-1 Fukaeminami-machi, Higashinada-ku
Kobe 658-0022, Japan

hirayama@maritime.kobe-u.ac.jp

Abstract

This paper presents a new distributed solution proto-
col, called DisLRPα, for the Generalized Mutual As-
signment Problem (GMAP). The GMAP is a typical
distributed combinatorial optimization problem whose
goal is to maximize social welfare of the agents. Un-
like the previous protocol for the GMAP, DisLRPα can
provide a theoretical guarantee on global solution qual-
ity. In DisLRPα, as with in the previous protocol, the
agents repeatedly solve their local problems while co-
ordinating their local solutions using a distributed con-
straint satisfaction technique. The key difference is that,
in DisLRPα, each agent is required to produce a fea-
sible solution whose local objective value is not lower
than α (0 < α ≤ 1) times the local optimal value. Our
experimental results on benchmark problem instances
show that DisLRPα can certainly find a solution whose
global objective value is higher than that theoretically
guaranteed. Furthermore, they also show that, while
spending extra communication and computation costs,
DisLRPα can produce a significantly better solution
than the previous protocol if we set α appropriately.

Introduction
Cooperative distributed problem solving deals with a multi-
agent problem whose goal is shared by all of the agents. If
such a shared goal is related to optimization and the problem
is inherently discrete, the entire problem may be formulated
as a distributed combinatorial optimization problem. Al-
though a number of studies have been made on solving the
problem (Androulakis & Reklaitis 1999; Kutanoglu & Wu
1999), there has been not so much work on distributed so-
lution protocol. By a distributed solution protocol we mean
a distributed algorithm, which can work without using any
global entity (such as server or coordinator).

Recently, several researchers have proposed distributed
solution protocols for the Distributed Constraint Optimiza-
tion Problem (DCOP) (Modi et al. 2003). The DCOP pro-
vides a general and simple model for distributed combina-
torial optimization, but their complete distributed solution
protocols are generally not very efficient.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

On the other hand, the robotics research community has
recently developed market-based techniques for coordinat-
ing a team of multiple robots (Dias et al. 2006). Some of
them can be viewed as (practical) distributed solution pro-
tocols for a distributed combinatorial optimization problem,
but their solution quality is generally not very high.

As a new model for distributed combinatorial optimiza-
tion, we have proposed the Generalized Mutual Assignment
Problem (GMAP) along with distributed solution protocols
(Hirayama 2006a; 2006b). The GMAP is a distributed for-
mulation of the Generalized Assignment Problem (GAP).
The GAP is a centralized NP-hard problem whose goal is
to find the most profitable assignment of jobs to agents such
that a job is assigned to exactly one agent and the assignment
satisfies all of the resource constraints imposed on individual
agents (Nauss 2006; Yagiura & Ibaraki 2006). The GMAP,
on the other hand, can be considered a distributed problem,
where the agents themselves, each of which has a set of jobs,
try to solve the entire GAP while communicating with each
other.

For the GMAP, we have presented two distributed solu-
tion protocols. One is DisLRPL yielding a solution that
provides a lower bound of the global optimal value (Hi-
rayama 2006b) and the other is DisLRPU yielding an up-
per bound of the global optimal value (Hirayama 2006a).
These protocols follow the same underlying procedure,
where the agents repeatedly solve their local problems while
coordinating their local solutions using a distributed con-
straint satisfaction technique. Note that, unlike other pro-
tocols for similar problems (Androulakis & Reklaitis 1999;
Kutanoglu & Wu 1999), these are pure distributed solution
protocols. Namely, they do not rely on any global entity (i.e.,
server or coordinator) that would become a performance bot-
tleneck and reduce robustness of the system.

One drawback of DisLRPL is solution quality. It exploits
randomness in solving local problems in order to produce
quick agreement between the agents on a global solution.
By controlling the degree of randomness one can control
the quality of the solution to some extent, but no theoretical
guarantee is provided on that quality. This paper presents a
new distributed solution protocol, called DisLRPα, for the
GMAP that can provide a theoretical guarantee on global
solution quality. DisLRPα accepts a certain value of α
(0 < α ≤ 1) as an input and can produce a global solution

whose objective value is not lower than α times the global
optimal value. Note that by using DisLRPα every agent as-
sures herself that an obtained global solution has that prop-
erty even if any agent does not know what the global solution
is and what the global optimal value is.

This paper first provides a formal definition of the GMAP
followed by a new property. Then, it presents the new proto-
col of DisLRPα, which exploits the proved property. Next,
it gives experimental results on benchmark instances show-
ing the actual performance of the protocol and finally con-
cludes this work.

Generalized Mutual Assignment Problem
The goal of the GAP is to find the most profitable assign-
ment of n jobs to m agents such that every job is assigned to
exactly one agent and the assignment satisfies all of the re-
source constraints imposed on individual agents. The GAP
is NP-hard; furthermore, the problem of judging the ex-
istence of a feasible solution to the GAP is NP-complete.
It can be formulated as the following integer programming
problem (Nauss 2006; Yagiura & Ibaraki 2006):

GAP (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max.
∑
k∈A

∑
j∈J

pkjxkj

s. t.
∑
k∈A

xkj = 1, ∀j ∈ J, (1)

∑
j∈J

wkjxkj ≤ ck, ∀k ∈ A, (2)

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J, (3)

where A = {1, ..., m} is a set of agents; J = {1, ..., n}
is a set of jobs; pkj and wkj are the profit and amount of
resource required, respectively, when agent k selects job j;
ck is the capacity (amount of available resource) of agent k.
xkj is a decision variable whose value is set to 1 when agent
k selects job j and 0 otherwise.

The Lagrangian relaxation problem for the GAP, denoted
as LGAP(µ), is obtained by dualizing the assignment con-
straints (1) of GAP (Fisher 1981):

LGAP(µ) (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max.
∑
k∈A

∑
j∈J

pkjxkj +
∑
j∈J

µj

(
1−

∑
k∈A

xkj

)

s. t.
∑
j∈J

wkjxkj ≤ ck, ∀k ∈ A, (4)

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J, (5)

where µj is a real-valued parameter called a Lagrange mul-
tiplier for job j and the vector µ = (µ1, µ2, . . . , µn) is
called a Lagrange multiplier vector. It is known that for
any value of µ the optimal value of LGAP(µ) provides an
upper bound of the optimal value of GAP .

Since, in LGAP(µ), the objective function is additive
over the agents and the constraints (4) are separable over
the agents, this maximization can be achieved by solving

the subproblems, each belongs to agent k (Lasdon 2002):
LGMPk(πk(µ)) (decide xkj , ∀j ∈ Rk) :

max.
∑

j∈Rk

pkjxkj +
∑

j∈Rk

µj

(
1
|Sj | − xkj

)

s. t.
∑

j∈Rk

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ Rk,

where Rk is a set of jobs that may be assigned to agent k and
Sj is a set of agents to whom job j may be assigned. We can
assume that Sj �= ∅ (i.e., |Sj | is not equal to zero) because a
job with an empty Sj does not have to be considered. πk(µ)
indicates a projection of µ over the jobs in Rk.

The GMAP is assumed to be a distributed problem, where
each agent has a set of jobs and tries to assign each of her
jobs to some agent such that the total sum of profits (so-
cial welfare) is maximized. In other words, the agents them-
selves try to generate an optimal solution of the GAP from
a non-optimal (and sometimes infeasible) solution of it. To
solve the GMAP, without gathering all information at one
place, distributed solution is possible by exploiting the fol-
lowing properties on the relation between the decomposed
subproblems and the global problem (Hirayama 2006b).
Property 1 For any value of µ, the total sum of the opti-
mal values of {LGMPk(πk(µ))|k ∈ A} provides an upper
bound of the optimal value of GAP .
Property 2 For some value of µ, if all of the optimal solu-
tions to {LGMPk(πk(µ))|k ∈ A} satisfy the assignment
constraints (1) of GAP , then these optimal solutions consti-
tute an optimal solution to GAP .

This paper presents the following new property resulting
a new solution protocol for the GMAP that can provide a
theoretical guarantee on global solution quality. It must be
noted that this is a generalization of Property 2.
Property 3 For some value of µ, if all of the feasible solu-
tions to {LGMPk(πk(µ))|k ∈ A} satisfy the assignment
constraints (1) of GAP , and their objective values are not
lower than α (0 < α ≤ 1) times the respective optimal
values, then these feasible solutions constitute a feasible so-
lution to GAP whose objective value is not lower than α
times the optimal value.
Proof: Let an objective value of a feasible solution
to LGMPk(πk(µ)) be vk(µ), the optimal value of
LGMPk(πk(µ)) be optk(µ), and the optimal value of GAP
be OPT . Obviously, those feasible solutions constitute a
feasible solution to GAP since they satisfy all constraints
of GAP . Furthermore, the objective value of such feasible
solution to GAP is equal to

∑
k∈A vk(µ). Since vk(µ) ≥

α× optk(µ) for any agent k, we obtain∑
k∈A

vk(µ) ≥
∑
k∈A

α× optk(µ)

= α
∑
k∈A

optk(µ)

≥ α ·OPT,

where we use Property 1 for the second inequality. �

Protocol
We have proposed DisLRPL for finding a solution to GMAP
(Hirayama 2006b). This section first describes the basic
methods of DisLRPL, which will also be used in the new
protocol. Then, it describes the scheme and implementation
of the new protocol.

Basic Methods
Property 2 suggests that, to solve GAP , the agents should
determine the values of Lagrange multiplier vector so that
the optimal solutions to {LGMPk(πk(µ))|k ∈ A} satisfy
the assignment constraints of GAP . This may be accom-
plished by solving a dual problem whose goal is to minimize
an upper bound of the global optimal value. On the other
hand, the problem of solving {LGMPk(πk(µ))|k ∈ A}
with a specific Lagrange multiplier vector is called a pri-
mal problem. An overall behavior of the protocol is that
the agents start with t = 0 and µ(0) = (0, . . . , 0) and al-
ternate solving primal and dual problems while performing
local communication with their respective neighbors. More
specifically, each agent k behaves as follows:

Step 1: sets t = 0 and µ(0) = (0, . . . , 0),

Step 2: solves LGMPk(πk(µ(t))),
Step 3: exchanges solutions with her neighbors,

Step 4: updates the Lagrange multiplier vector from µ(t)

to µ(t+1),

Step 5: increases t by one and goes to Step 2.
The loop between Steps 2 and 5 is called a round and stops
when all of the assignment constraints are satisfied or a pre-
specified upper bound of rounds is reached. It must be noted
that this protocol uses only local communication among
agents. It never uses any global entity that can easily interact
with the whole agents.

The primal problem, LGMPk(πk(µ(t))) with a spe-
cific Lagrange multiplier vector in Step 2, is virtually
the 0-1 knapsack problem, which is known to be NP-
hard. The protocol does not provide a specific solver for
LGMPk(πk(µ(t))), but we should use a state-of-the-art ex-
act solver since an agent has to solve this problem repeat-
edly while varying the Lagrange multiplier vector. Fortu-
nately, the 0-1 knapsack problem is said to be a “easier hard”
problem (Fisher 1981) and there exist practically efficient
solvers.

Neighbors of agent k, mentioned in Step 3, are infor-
mally stated as a set of agents with whom agent k shares
assignment constraints. They can be formally described as⋃

j∈Rk
Sj \ {k} (Hirayama 2006b).

To solve the dual problem an agent uses a subgradient
optimization method. In this method, agent k first computes
subgradient gj for each job j in Rk by

gj = 1−
∑
i∈Sj

xij .

Obviously, agent k needs to know current solutions of neigh-
bors to compute subgradients. Intuitively, gj means the gap

between the number of agents required for job j (one in this
case) and the number of agents that currently select this job.
Then, in Step 4, agent k updates µj for each job j in Rk by

µ
(t+1)
j ← µ

(t)
j − l(t)

gj

|Sj | , (6)

where l(t) is a step length, a positive scalar parameter that
may vary depending on discrete time t, and |Sj | is the num-
ber of agents involved in job j. According to this rule, µj

gets higher when job j attracts too many agents and lower
when it attracts too few agents. Namely, µj can be viewed
as the price of job j.

By repeating Steps 2-5 we can expect that an upper bound
of the global optimal value of GAP gradually decreases, and
thus the agents eventually reach to a state that is close to a
global optimal solution. In the meantime, if all of the as-
signment constraints are satisfied, the protocol can be termi-
nated because this fact indicates the agents have reached to
a global optimal solution. Note that each agent can detect
this fact by using the termination detection technique of the
distributed breakout algorithm (Hirayama & Yokoo 2005).

Scheme
It has been observed that the protocol converges to a state
that is close to a global optimal solution (Hirayama 2006a).
However, such a global state is usually infeasible, where
the agents violate some assignment constraints. In order to
achieve global feasibility, the noise strategy has been pro-
posed in (Hirayama 2006b), which allows each agent to use
a non-deterministic (i.e. noisy) rule instead of the determin-
istic rule of (6) for updating Lagrange multipliers. In fact,
µj is distributed over the agents involved in job j, each of
which updates its value with a given rule. When the rule is
deterministic like (6), the agents involved in job j always
keep the same value to their respective µjs. On the other
hand, when the rule is non-deterministic, they tend to assign
different values to their respective µjs. A noisy rule was
surprisingly effective for achieving global feasibility at the
little cost of solution quality degradation (Hirayama 2006b).
However, the previous noisy rule has only a limited range
of values on the control parameter, and thus we cannot in-
troduce more drastic noise. Therefore, we first introduce the
following new rule for updating Lagrange multipliers:

µ
(t+1)
j ← µ

(t)
j − Uδ · gj

|Sj | , (7)

where Uδ is a random step length whose value is uniformly
distributed over [0, δ). With this rule we can introduce more
drastic noise in µj , while preserving an updating direction
given by the sign of gj .

As with the previous noisy rule, this rule has been suc-
cessful in finding a global feasible solution and furthermore,
by controlling the value of δ, it allows us to control global
solution quality to some extent. However, a drawback of
this rule (and the previous noisy rule) is that it does not pro-
vide any theoretical guarantee on global solution quality. In
this paper, we aim at avoiding this drawback and introduce
DisLRPα that can provide a theoretical guarantee on global
solution quality.

DisLRPα accepts a certain value of α (0 < α ≤ 1)
as an input and can produce a global solution whose ob-
jective value is not lower than α times the global opti-
mal value. This protocol relies on Property 3, which says
that a sufficient condition for a global solution to have at
least the quality of α is: 1) all of the feasible solutions
to {LGMPk(πk(µ))|k ∈ A} satisfy the assignment con-
straints, and 2) the objective values of their feasible solu-
tions are not lower than α times their respective optimal val-
ues. This condition can be achieved by the new protocol,
where each agent k repeats the following steps until all of
the assignment constraints are satisfied:

Step 1: sets t = 0 and µ(0) = (0, . . . , 0),

Step 2: finds a feasible solution to LGMPk(πk(µ(t)))
whose objective value is not lower than α times the opti-
mal value,

Step 3: exchanges solutions with her neighbors,

Step 4: updates the Lagrange multiplier vector from µ(t)

to µ(t+1),

Step 5: increases t by one and goes to Step 2.

Note that it is different from the basic protocol only in Step
2. While the basic protocol requires an optimal solution in
Step 2, the new protocol can relax this requirement.

Implementation
In Step 2 of the new protocol each agent k must find
a feasible solution to LGMPk(πk(µ(t))) whose objective
value is not lower than α times the optimal value. We
use a simple method for finding such feasible solutions to
LGMPk(πk(µ(t))). In this method every agent is assumed
to have two Lagrange multipliers, µj and νj , for job j. µj

is updated with the deterministic rule of (6) and therefore
keeps the same value consistently among the agents involved
in job j. This means µj constitutes µ, a global Lagrange
multiplier vector over the jobs. These multipliers define
a subproblem for agent k denoted by LGMPk({µj |j ∈
Rk}). On the other hand, νj is updated with the noisy rule
of (7) and therefore may have different values depending on
the agents involved in job j. These define another subprob-
lem for agent k denoted by LGMPk({νj |j ∈ Rk}). Note
that these two subproblems, LGMPk({µj |j ∈ Rk}) and
LGMPk({νj|j ∈ Rk}), have the same feasible region but
different coefficients of their objective functions.

Our basic idea is to exploit an optimal solution to the
“skewed” subproblem of LGMPk({νj |j ∈ Rk}) as a feasi-
ble solution to the “true” subproblem of LGMPk({µj|j ∈
Rk}). Namely, if an optimal solution to a skewed subprob-
lem has a “true” objective value that is not lower than α
times the “true” optimal value, it is certainly a feasible so-
lution whose objective value is not lower than α times the
optimal value for the “true” subproblem. Thus, in Step 2 of
the new protocol, agent k performs the following:

Step 2.1: finds an optimal solution Strue and the optimal
value vtrue for LGMPk({µ(t)

j |j ∈ Rk}),

Step 2.2: finds an optimal solution Sskew for LGMPk(
{ν(t)

j |j ∈ Rk}),
Step 2.3: computes an objective value vskew of Sskew by
using the objective function ofLGMPk({µ(t)

j |j ∈ Rk}),
Step 2.4: if vskew/vtrue ≥ α then adopts Sskew ; other-
wise adopts Strue and performs ν

(t)
j ← µ

(t)
j for ∀j ∈ Rk.

We should point out that an agent solves two different op-
timization problems in one round (Steps 2.1 and 2.2) and
thus the computational load of an agent gets doubled. This
may be a drawback of the new protocol, but we assume that
each agent is equipped with an efficient solver. Even if a
current solver is not efficient enough, we can expect a forth-
coming solver will be able to solve the problem efficiently
because the centralized optimization technology is still mak-
ing progress.

It must be also noted that a skewed subproblem does not
necessarily provide a feasible solution whose objective value
is not lower than α times the optimal value for the “true”
subproblem. If a skewed subproblem produces a poor feasi-
ble solution whose objective value is lower than α times the
optimal value, we consider that this subproblem has been
skewed too much by the noisy rule. If this happens, we can-
cel out the noise by substituting µj for νj in Step 2.4.

Experiments
We made experiments to compare the performance of
DisLRPL and the family of DisLRPα (DisLRP0.90,
DisLRP0.95, and DisLRP0.99) on some GMAP instances,
which were derived from GAP benchmark instances.
DisLRPL uses rule (7) for updating Lagrange multipliers,
while DisLRPα uses rule (6) for updating µj and rule (7)
for updating νj . Step length l(t) in rule (6) was fixed to 1.

For a GAP instance, we consider the problem, where the
agents themselves try to generate an optimal solution from
a non-optimal solution. This problem can be considered a
GMAP instance, where each agent tries to (re)assign each
of her jobs to any of the agents. In this GMAP instance,
since any job j may be assigned to any agent, the whole
agents are involved in any job j (i.e., Sj = A for ∀j ∈ J).
This means that for any agent k LGMPk(πk(µ)) forms a 0-
1 knapsack instance with all of the jobs in the system. This
GMAP instance is called a complete-topology instance for
which the quality of global solution found by DisLRPL was
likely to be poor (Hirayama 2006b).

Experiments were conducted on a discrete event simulator
that simulates the behavior of the protocols. In the simulator
we used ILOG CPLEX ver 8.1 for each agent to solve a local
0-1 knapsack instance. We made 10 runs for each instance
and a run was cut off at 5000 rounds.

Figure 1 shows the quality of global solutions found by
each protocol. The quality was computed by dividing an
objective value of an obtained global solution by the global
optimal value. In these figures, each vertical line represents
a range of quality over 10 runs and a symbol on the line
represents their mean.

DisLRPL
DisLRP90
DisLRP95
DisLRP99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

2020020100102001010052005100

(d) gapb

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

1050-51050-41050-31050-21050-1

Q
u
al

it
y
 (

O
b
jV

al
/O

p
t)

(a) gap11(a) gap11

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

1060-51060-41060-31060-21060-1

(b) gap12

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

2020020100102001010052005100

Q
u
al

it
y
 (

O
b
jV

al
/O

p
t)

(c) gapa

Figure 1: Range of solution quality

The instances of gap11 and gap12 are obtained from
http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/gapinfo.html.
The gap11 includes 5 instances each having 10 agents and
50 jobs, while the gap12 also includes 5 instances each
having 10 agents and 60 jobs. On the other hand, the
instances of gapa and gapb are obtained from http://www.al.
cm.is.nagoya-u.ac.jp/˜yagiura/gap/. They include the 6
instances, respectively, of c5100-1 (5 agents and 100 jobs),
c5200-2 (5 agents and 200 jobs), c10100-3 (10 agents and
100 jobs), c10200-4 (10 agents and 200 jobs), c20100-5
(20 agents and 100 jobs), and c20200-6 (20 agents and
200 jobs), and are still challenging even for a centralized
GAP algorithm. Since the gapa and the gapb have been
suggested to be solved as a minimization problem, we
applied the protocols, which are designed for maximization,
to their instances after transforming them into equivalent
maximization instances.

For every instance we can see a clear trend that DisLRPα

can find a global solution with higher quality than DisLRPL.
We should point out that the quality actually achieved by
DisLRPα is higher than that theoretically guaranteed. For
example, DisLRP0.90 guarantees, in theory, that the solu-
tion found has an objective value which is not lower than 90
percent of the optimal (for a minimization problem, which
is not larger than 10 percent of the optimal), but it actually
finds solutions whose objective values are more than 98 per-
cent for the gap11, more than 97 percent for the gap12, less

than 4 percent for the gapa, and less than 6 percent for the
gapb. Furthermore, we can see that increasing α actually
leads to finding global solutions with higher quality and as a
result the variance of solution quality is naturally reduced.

Figure 2 shows, for each instance, the average number of
rounds at which a global solution was found. For a run that
was not finished within 5000 rounds, we counted its cost as
5000. In these figures, the ratio of successful runs is shown
at the top of a bar if the ratio is below 1.0.

We can see that DisLRPα obviously spends much more
rounds to find a global solution. Since the number of mes-
sages increases with the number of rounds, this indicates
DisLRPα is more expensive in terms of communication
cost. Similarly, the number of calling a local solver in an
agent also increases with the number of rounds. Besides, an
agent in DisLRPα calls a local solver twice a round. This
indicates that a total computation cost for DisLRPα is much
higher than that for DisLRPL. However, we consider that
these are inevitable costs for finding a global solution with
higher quality. One should select a protocol that provides
the best balance between solution quality and solution costs
depending on one’s requirement.

When using rule (7) for updating Lagrange multipliers,
we should be careful in selecting a value of δ, which con-
trols the degree of noise, because it is crucial for the perfor-
mance of the protocol (Hirayama 2006b). In our experiment,
δ was set to 3 for the gap11 and the gap12 and 10 for the

DisLRPL
DisLRP90
DisLRP95
DisLRP99

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2020020100102001010052005100

0.4

0.3 0.2

0.9

(d) gapb

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1050-51050-41050-31050-21050-1

C
o
st

 (
A

v
er

ag
e

#
 o

f
R

o
u
n
d
s)

(a) gap11

 600

 800

 1000

 1200

 1400

 1600

 1800

1060-51060-41060-31060-21060-1

(b) gap12

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

2020020100102001010052005100

C
o
st

 (
A

v
er

ag
e

#
 o

f
R

o
u
n
d
s)

(c) gapa

Figure 2: Solution cost

gapa and the gapb. We should point out that when δ takes
an extremely large value, DisLRPα, particularly with α be
very close to one, may fail to find a solution, because with
that setting the noise becomes so large that it is frequently
canceled out. In this case DisLRPα behaves like the plain
DisLRP with rule (6). This implies that the performance of
DisLRPα is not very robust for a combination of δ and α.

Conclusions
This paper presented DisLRPα for the GMAP. Unlike
DisLRPL, DisLRPα can provide a theoretical guarantee on
global solution quality. Our experimental results showed
that DisLRPα can certainly find a solution whose global
objective value is higher than that theoretically guaranteed
and, while spending extra communication and computation
costs, DisLRPα can produce a significantly better solution
than DisLRPL if we set α appropriately.

References
Androulakis, I. P., and Reklaitis, G. V. 1999. Approaches to
asynchronous decentralized decision making. Computers
and Chemical Engineering 23:341–355.
Dias, M. B.; Zlot, R.; Kalra, N.; and Stentz, A. 2006.
Market-based multirobot coordination: a survey and anal-
ysis. Proceedings of the IEEE 94(7):1257–1270.
Fisher, M. L. 1981. The Lagrangian relaxation method

for solving integer programming problems. Management
Science 27(1):1–18.
Hirayama, K., and Yokoo, M. 2005. The distributed break-
out algorithms. Artificial Intelligence 161(1–2):89–115.
Hirayama, K. 2006a. A distributed solution protocol that
computes an upper bound for the generalized mutual as-
signment problem. In 7th Intl. Ws. on Distributed Con-
straint Reasoning, 102–116.
Hirayama, K. 2006b. A new approach to distributed
task assignment using Lagrangian decomposition and dis-
tributed constraint satisfaction. In AAAI-2006, 660–665.
Kutanoglu, E., and Wu, S. D. 1999. On combinatorial
auction and Lagrangian relaxation for distributed resource
scheduling. IIE Transactions 31(9):813–826.
Lasdon, L. S. 2002. Optimization Theory for Large Sys-
tems. Dover.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M.
2003. An asynchronous complete method for distributed
constraint optimization. In AAMAS-2003, 161–168.
Nauss, R. M. 2006. The generalized assignment problem.
In Karlof, J. K., ed., Integer Programming: Theory and
Practice, 39–55. CRC Press.
Yagiura, M., and Ibaraki, T. 2006. Generalized assignment
problem. In Gonzalez, T. F., ed., Handbook of Approxima-
tion Algorithms and Metaheuristics, Computer & Informa-
tion Science Series. Chapman & Hall/CRC.

