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Abstract
This paper presents a new DCOP algorithm called
DeQED (Decomposition with Quadratic Encod-
ing to Decentralize). DeQED is based on the
Divide-and-Coordinate (DaC) framework, where
the agents repeatedly solve their updated local sub-
problems (the divide stage) and exchange coordi-
nation information that causes them to update their
local sub-problems (the coordinate stage). Unlike
other DaC-based DCOP algorithms, DeQED does
not essentially increase the complexity of local sub-
problems and allows agents to avoid exchanging
(primal) variable values in the coordinate stage.
Our experimental results show that DeQED signifi-
cantly outperformed other incomplete DCOP algo-
rithms for both random and structured instances.

1 Introduction
In many applications of distributed problem solving, the
agents may want to optimize a global objective while pre-
serving their privacy and security. This problem can be for-
malized as the Distributed Constraint Optimization Problem
(DCOP). To solve DCOP, several complete algorithms have
been presented in the literature [Modi et al., 2005; Petcu
and Faltings, 2005], but one recent trend may be incomplete
algorithms [Farinelli et al., 2008; Kiekintveld et al., 2010;
Vinyals et al., 2010a; 2010b] due to the need to find high-
quality solutions quickly for large-scale problem instances.

This paper presents a new DCOP algorithm called DeQED
(Decomposition with Quadratic Encoding to Decentralize).
DeQED is based on the Divide-and-Coordinate (DaC) frame-
work, where the agents repeatedly solve their updated lo-
cal sub-problems (the divide stage) and exchange coordina-
tion information that causes them to update their local sub-
problems (the coordinate stage). Unlike other DaC-based
DCOP algorithms [Vinyals et al., 2010a; 2010b], DeQED
does not essentially increase the complexity of local sub-
problems and allows agents to avoid exchanging (primal)
variable values in the coordinate stage.
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Through comparison with MaxSum [Farinelli et al., 2008],
DALO [Kiekintveld et al., 2010], and EU-DaC [Vinyals et
al., 2010b], we demonstrate that DeQED works very well
both in terms of solution quality and efficiency.

The remainder of this paper is organized as follows. We
first introduce DCOP and the DaC framework in Section 2,
followed by the details of DeQED in Section 3. We experi-
mentally compare DeQED with other incomplete DCOP al-
gorithms in Section 4 and conclude this work in Section 5.

2 DCOP and DaC framework
COP is defined by a set X of variables, where each vari-
able xi has a finite domain Di from which it takes its value,
and a set F of binary cost functions, where each function
fi,j : Di × Dj → <+ returns a non-negative cost value for
each binary relation between variable xi’s domain and vari-
able xj’s domain.

DCOP is the COP where variables are controlled by a setA
of agents. Each variable belongs to some agent who controls
it. We denote the fact that variable xi belongs to agent a by
belong(xi) = a. The goal of COP and DCOP is to find a
value assignment to X that minimizes the total sum of the
values of cost functions.

In DCOP, the cost functions are divided into a set
Finter of inter-agent cost functions and a set Fintra

of intra-agent cost functions. Formally, we define
Finter ≡ {fi,j |belong(xi) 6= belong(xj)} and Fintra ≡
{fi,j |belong(xi) = belong(xj)}.

An agent in DCOP may have multiple variables in its con-
trol. These multiple variables of an agent can be divided
into two sets. One is the set of variables involved in inter-
agent cost functions, which we call interface variables. A
set of interface variables of agent a is defined by Xa

inf ≡
{xi | belong(xi) = a,∃xj(fi,j ∈ Finter ) ∨ (fj,i ∈ Finter )}.
The other is the set of variables that is not involved in any
inter-agent cost functions, which we call hidden variables.
A set of hidden variables of agent a is defined by Xa

hid ≡
{xi | belong(xi) = a, xi 6∈ Xa

inf }.
DaC (Divide-and-Coordinate) is the framework for solv-

ing DCOP, where the agents repeatedly solve their updated
local sub-problems (the divide stage) and exchange coordina-
tion information that causes them to update their local sub-
problems (the coordinate stage). The work in [Vinyals et



al., 2010a; 2010b] has instantiated this framework as fol-
lows. The problem is divided in such a way that the resulting
sub-problems share some variables, each of which yields an
inter-agent equality constraint among its copies. The value
assignments on these copies (interface variables) may be in
disagreement with each other when the agents solve their sub-
problems independently. Therefore, the agents iterate the fol-
lowing two stages to reach the state where the assignments on
every variable’s copies are in agreement.
divide stage: Each agent updates its own sub-problem with

information received from its neighbors and solves this
updated sub-problem.

coordinate stage: Each agent sends information about dis-
agreement on variables to its neighbors.

Both DaCSA [Vinyals et al., 2010a] and EU-DaC [Vinyals
et al., 2010b] are DaC-based algorithms. Agents in DaCSA
control Lagrange multipliers, each of which is defined for
any shared variable, while agents in EU-DaC control coor-
dination parameters, so that value assignments on every vari-
able’s copies are in agreement. It must be noted that, even
when solving a DCOP instance with one variable per agent,
each agent in DaCSA and EU-DaC has a tree-structured local
sub-problem.

3 DeQED
As with DaCSA, DeQED exploits the Lagrangian decom-
position technique, but the difference between DeQED and
DaCSA is the way of encoding of the entire problem. In De-
QED, we use quadratic encoding, in which an inter-agent
cost function is encoded into the quadratic programming
problem. Let us start this section by presenting the details
of the quadratic encoding.

3.1 Quadratic encoding
Let us assume that every variable has the same domain, say
D, without loss of generality. For cost function fi,j ∈ F be-
tween variable xi and variable xj , we introduce the following
|D| × |D| cost matrix:

Fi,j =


ci,j1,1 ci,j1,2 · · · ci,j1,|D|
ci,j2,1 ci,j2,2 · · · ci,j2,|D|

...
...

. . .
...

ci,j|D|,1 ci,j|D|,2 · · · ci,j|D|,|D|

 ,

whose element ci,jm,n represents the cost when we assign vari-
able xi the mth value of domain and variable xj the nth
value of domain. Furthermore, for variables xi and xj ,
we introduce new variables xi and xj respectively, whose
domains are the whole set of |D|-dimensional unit column
vectors. Namely, we have xi ∈ {e1, e2, . . . , e|D|} and
xj ∈ {e1, e2, . . . , e|D|}, where e1 is (1, 0, 0, . . . , 0)T, e2
is (0, 1, 0, . . . , 0)T, and so on. Superscript T means the trans-
pose of a vector.

Given this representation, the value of cost function fi,j
can be computed by (xi)

T · Fi,j · xj . For example, when
xi takes the mth value and xj takes the nth value, the cost is

computed by (em)T ·Fi,j ·en, resulting in the (m,n)-element
of Fi,j .

Therefore, DCOP can be formulated as

DCOP :

min
x

∑
fi,j∈Finter

(xi)
T · Fi,j · xj +

∑
fi,j∈Fintra

(xi)
T · Fi,j · xj

s. t. xi,∈ {e1, e2, · · · , e|D|}, ∀xi ∈ X.

Since the intra-agent cost functions are partitioned among the
agents, we can put the intra-agent cost functions on agent a
together to produce one black-box function ϕa that returns,
given an assignment to the variables, the sum of the values of
a’s intra-agent cost functions. With this black-box function,
we can reformulate DCOP as follows:

DCOP : min
x

∑
fi,j∈Finter

(xi)
T · Fi,j · xj +

∑
a∈A

ϕa(X)

s. t. xi,∈ {e1, e2, · · · , e|D|}, ∀xi ∈ X.

We introduce two auxiliary variablesαi,j
i andαi,j

j for each
inter-agent cost function fi,j . These auxiliary variables are
supposed to be the copies of interface variables xi and xj

in terms of fi,j , respectively. Hence, we have an equivalent
description of the above DCOP as follows:

DCOP ′ :

min
x,α

∑
fi,j∈Finter

(αi,j
i )T · Fi,j ·αi,j

j +
∑
a∈A

ϕa(X)

s. t. xi = α
i,j
i , xj = α

i,j
j , ∀fi,j ∈ Finter , (1)

xi,∈ {e1, e2, · · · , e|D|}, ∀xi ∈ X,
αi,j

i ,αi,j
j ∈ {e1, e2, · · · , e|D|}, ∀fi,j ∈ Finter ,

where α and x are decision variables. Due to space limi-
tations, we omit the last two lines of the above formulation
because they just describe the domain of these decision vari-
ables.

3.2 Lagrangian Decomposition
We decompose this problem into the sub-problems over the
agents. First, we relax a set of copy constraints (1) to produce
the Lagrangian relaxation problem:

L : L(µ) ≡ min
x,α

∑
fi,j∈Finter

(αi,j
i )T · Fi,j ·αi,j

j +
∑
a∈A

ϕa(X)

+
∑

fi,j∈Finter

(µi,j
i )T(xi −αi,j

i )

+
∑

fi,j∈Finter

(µi,j
j )T(xj −αi,j

j ),

where bothµi,j
i andµi,j

j are |D|-dimensional real-valued col-
umn vectors and called Lagrange multiplier vectors. For any
fixed values for µ, the optimal value of L, denoted by L(µ),
provides a lower bound on the optimal value of DCOP ′.



Then, we decompose the objective function of L into the
terms on the individual agents and the terms on auxiliary vari-
ables. As a result, we get the sub-problem on the agents:

Lagn : Lagn(µ)

≡ min
x

∑
a∈A

{
ϕa(X) +

∑
(xi,xj)∈Pa

(µi,j
i )Txi +

∑
(xi,xj)∈Na

(µi,j
j )Txj

}
,

=
∑
a∈A

min
x

{
ϕa(X) +

∑
(xi,xj)∈Pa

(µi,j
i )Txi +

∑
(xi,xj)∈Na

(µi,j
j )Txj

}
,

≡
∑
a∈A

La(µ),

where P a ≡ {(xi, xj) | fi,j ∈ Finter ,belong(xi) = a} and
Na ≡ {(xi, xj) | fi,j ∈ Finter ,belong(xj) = a}. We also
get the sub-problem on auxiliary variables:

Laux : Laux(µ)

≡ min
α

∑
fi,j∈Finter

{
(αi,j

i )TFi,jα
j,i
j −(µ

i,j
i )Tαi,j

i −(µ
i,j
j )Tαi,j

j

}
.

=
∑

fi,j∈Finter

min
α

{
(αi,j

i )TFi,jα
i,j
j −(µ

i,j
i )Tαi,j

i −(µ
i,j
j )Tαi,j

j

}
.

≡
∑

fi,j∈Finter

Laux
i,j (µ).

Note that, except for µ, these sub-problems do not share any
decision variables; even the sub-problems on agents do not
share their decision variables.

Given fixed values for µ, the sub-problem giving La(µ) of
each agent a can be viewed as the Weighted Constraint Satis-
faction Problem (WCSP). For example, the term of (µi,j

i )Txi

is a unary soft constraint on variable xi whose weights for
domain values are µi,j

i . Furthermore, ϕa(X) is actually a
set of binary soft constraints. On the other hand, it is trivial
to solve the sub-problem giving Laux

i,j (µ) of each inter-agent
cost function fi,j because we just select an optimal pair of
values for the cost matrix that is modified with µ.

To summarize, we get the following Lagrangian decompo-
sition:

L(µ) =
∑
a∈A

La(µ) +
∑

fi,j∈Finter

Laux
i,j (µ).

3.3 Lagrangian Dual
The goal of the Lagrangian dual problem is to maximize the
lower bound that is obtained by solving the Lagrangian re-
laxation problem by controlling values of µ. With the above
decomposition, it is formally defined by

D : max
µ

∑
a∈A

La(µ) +
∑

fi,j∈Finter

Laux
i,j (µ). (2)

Clearly, the value of the objective function of D provides a
lower bound on the optimal value of DCOP ′.

DeQED solves this decomposed Lagrangian dual problem
by searching for the values of µ that give the highest lower
bound on the optimal value of DCOP ′.

(a) DCOP Instance (b) Problem Distribution

Figure 1: Example of problem distribution

3.4 Problem Distribution
We need to clarify which agent should compute which part of
(2). Regarding the primal phase, where we solve the mini-
mization problem over x andα with specific values on µ, we
propose that

• La(µ) should be computed by agent a since it includes
only agent a’s variables;

• Laux
i,j (µ) should be computed by either of the agents

who control variables xi or xj since it represents inter-
agent cost function fi,j between these agents.

On the other hand, regarding the dual phase, where we solve
the maximization problem over µ with specific values on x
and α, we propose that

• since Lagrange multiplier vectors µi,j
i and µi,j

j are
related to inter-agent cost function fi,j , both vectors
should be controlled by the agents having variables xi

and xj , respectively.

Let us present an example. In Figure 1 (a), nodes are vari-
ables, edges are binary cost functions, and boxes are agents.
The Lagrangian dual problem of this example consists of the
following:

• X = {x1, x2, . . . , x6}, A = {1, 2, 3},
• Finter = {f1,4, f2,5, f4,6}, Fintra = {f1,2, f3,4, f5,6},
• P 1 = {(x1, x4), (x2, x5)}, N1 = {},
• P 2 = {(x4, x6)}, N2 = {(x1, x4)},
• P 3 = {}, N3 = {(x2, x5), (x4, x6)},
• ϕ1(X) returns the objective of COP

: {(x1, x2), (f1,2)},
• ϕ2(X) returns the objective of COP

: {(x3, x4), (f3,4)},
• ϕ3(X) returns the objective of COP

: {(x5, x6), (f5,6)},

• L1(µ) = min {ϕ1(X) + (µ1,4
1 )Tx1 + (µ2,5

2 )Tx2},

• L2(µ) = min {ϕ2(X) + (µ4,6
4 )Tx4 + (µ1,4

4 )Tx4},

• L3(µ) = min {ϕ3(X) + (µ2,5
5 )Tx5 + (µ4,6

6 )Tx6},

• Laux
1,4 (µ) = min {(α1,4

1 )T ·F1,4 ·α1,4
4 − (µ1,4

1 )Tα1,4
1 −

(µ1,4
4 )Tα1,4

4 },



• Laux
2,5 (µ) = min {(α2,5

2 )T ·F2,5 ·α2,5
5 − (µ2,5

2 )Tα2,5
2 −

(µ2,5
5 )Tα2,5

5 },

• Laux
4,6 (µ) = min {(α4,6

4 )T ·F4,6 ·α4,6
6 − (µ4,6

4 )Tα4,6
4 −

(µ4,6
6 )Tα4,6

6 }.
We propose to distribute these components over the agents

as depicted in Figure 1 (b), where

• Agent 1 computes L1(µ), Laux
1,4 (µ)/2, and Laux

2,5 (µ)/2

while controlling µ1,4
1 and µ2,5

2 . Note that, in comput-
ing Laux

1,4 (µ)/2 and Laux
2,5 (µ)/2, it needs µ1,4

4 and µ2,5
5 ,

which are controlled by the other agents.

• Agent 2 computes L2(µ), Laux
1,4 (µ)/2, and Laux

4,6 (µ)/2

while controlling µ1,4
4 and µ4,6

4 . Note that, in comput-
ing Laux

1,4 (µ)/2 and Laux
4,6 (µ)/2, it needs µ1,4

1 and µ4,6
6 ,

which are controlled by the other agents.

• Agent 3 computes L3(µ), Laux
2,5 (µ)/2, and Laux

4,6 (µ)/2

while controlling µ2,5
5 and µ4,6

6 . Note that, in comput-
ing Laux

2,5 (µ)/2 and Laux
4,6 (µ)/2, it needs µ2,5

2 and µ4,6
4 ,

which are controlled by the other agents.

We should emphasize that, given values ofµ, La(µ) for agent
a is a WCSP on variables x, and Laux

i,j (µ) for inter-agent
cost function fi,j is a trivial problem on auxiliary variables
α. In the above, each Laux

i,j (µ) is divided by two and shared
between a pair of agents. This is due to making the total sum
of La(µ) over the agents and Laux

i,j (µ) over the inter-agent
cost functions equal to the objective of (2).

3.5 Minimal Procedure
Below is the minimal procedure of DeQED, where the agents
try to find values for µ that minimize the objective of (2).

Step 1: The agents initialize their µ as (0, . . . , 0)T.

Step 2: Every agent a sends, for each inter-agent cost func-
tion fi,j with belong(i) = a, the value of µi,j

i to the
agent to which xj belongs. Similarly, it sends, for each
inter-agent cost function fi,j with belong(j) = a, the
value of µi,j

j to the agent to which xi belongs.

Step 3: After receiving all of the latest values for µ, every
agent a solves La(µ) by an exact WCSP solver and
Laux
i,j (µ) by evaluating all possible pairs of the values

for xi and xj .

Step 4: If CanTerminate? then the agents stop; otherwise
they update µ and go back to Step 2.

We refer to one iteration from Steps 2 to 4 as a cycle.
Next, we focus on Step 4, giving the details of what con-

ditions cause the agents to stop and how to update Lagrange
multiplier vector µ in every cycle. Before doing so, however,
it is worth mentioning how the agents can explicitly compute
upper and lower bounds on the global optimal values of the
original DCOP.

3.6 Computing Upper and Lower Bounds
DeQED can work in its minimal form. In that case, if it is
successfully terminated, a final assignment for the variables is

guaranteed to be globally optimal. However, if it terminates
due to a time limit, agents in the minimal DeQED get only
an assignment for their variables with no extra information.
If the agents require a lower or upper bound on the global
optimal, they need to explicitly communicate those bounds.

Remember that the value of the objective of (2) gives a
lower bound on the global optimal. Thus, as with the method
in [Hirayama et al., 2009], agents can compute a lower
bound by explicitly collecting all of the values of La(µ) and
Laux
i,j (µ) over the agents at a certain cycle by using a span-

ning tree. Note that, by this method, agents need to exchange
the objective values of sub-problems but do not need to ex-
change an assignment on interface variables.

On the other hand, if we allow agents to exchange an
assignment on interface variables, they can compute their
pieces of the global objective. By collecting those pieces us-
ing a spanning tree, agents can compute an upper bound on
the global optimal.

These upper and lower bounds can be computed on-line
in every cycle by overlaying a distributed data-collection
protocol on the minimal DeQED. Furthermore, as we shall
see later, the agents in DeQED can exploit the best bounds,
BestUB and BestLB, among those computed in deciding when
to terminate the procedure and how to update the µ. We refer
to this extended version of DeQED as DeQEDa and to the
minimal version of DeQED as DeQEDm.

It is noteworthy that the agents in DeQEDm only exchange
dual variables. Namely, they do not have to exchange values
of interface variables. Considering that one major motivation
of DCOP is privacy and security, this property of DeQEDm

should be important.

3.7 Termination
At Step 4 in the procedure, we have the following three crite-
ria to make the agents terminate themselves.

satisfying relaxed constraints Since we have relaxed equal-
ity constraints (1) of DCOP ′, we can ensure that if the
solutions to the sub-problems at Step 3 happen to satisfy
all of the relaxed constraints, then these solutions con-
stitute an optimal solution to DCOP. To detect the fact
that all of the relaxed constraints are satisfied, the agents
need to take a snapshot of the system, which can be done
by using a spanning tree.

achieving a quality bound When the agents compute
BestUB and BestLB as in Section 3.6, they can terminate
themselves if BestUB/BestLB becomes no more than
a specified quality bound. The agents end with a global
optimal solution if the quality bound is set to one.

exceeding a time limit Obviously, the agents terminate
themselves whenever they use up the time allowed.

Clearly, DeQEDa terminates with any of these three criteria
while DeQEDm does with the first or third one.

3.8 Updating Lagrange Multipliers
If none of the above criteria is met, the agents update their
own µ aiming at a tighter (higher) lower bound on the opti-
mal value of DCOP. This involves a search algorithm for the



Lagrangian dual problem. We solve this problem with the
sub-gradient ascent method [Bertsekas, 1999]. Here are the
details of this method.

For each inter-agent cost function fi,j ,

1. the agents with xi and xj compute sub-gradient Gi,j
i

andGi,j
j as:

Gi,j
i ≡ xi −αi,j

i , Gi,j
j ≡ xj −αi,j

j ,

which correspond to the coefficients of µi,j
i and µi,j

j ,
respectively, in the objective function of L.

2. they update µi,j
i and µi,j

j as

µi,j
i ← µi,j

i +D ·Gi,j
i , µi,j

j ← µi,j
j +D ·Gi,j

j ,

where D is a scalar parameter, called step length, which
is computed differently depending on the implementa-
tions of algorithm.

This method implies that an agent increases (decreases) the
value of the Lagrange multiplier if its corresponding coeffi-
cient in the objective function of L is positive (negative), hop-
ing that L(µ), a lower bound on the optimal value of DCOP,
increases in the next cycle.

To compute step length, DeQEDm follows a simple dimin-
ishing strategy where starting from a certain value of D (e.g.
10% of the possible maximum cost), we gradually reduce it
by half after keeping its value for a fixed number of cycles
(e.g. 10 cycles). Note that DeQEDm should require some
tuning process to find a valid schedule for diminishing step
length.

On the other hand, DeQEDa follows the conventional strat-
egy, where we compute step length by

D ≡ π(BestUB − BestLB)∑
fi,j∈Finter

{(Gi,j
i )T ·Gi,j

i + (Gi,j
j )T ·Gi,j

j }
, (3)

in which π is a scalar parameter that, starting from its initial
value of two, is reduced by half when BestLB is not updated
for a certain consecutive number of cycles (e.g. five cycles).

Although the sub-gradient ascent method is quite simple,
it does not necessarily converge to an optimal solution to
DCOP. Thus, both DeQEDm and DeQEDa are incomplete.

4 Experiments
We compared DeQED with DALO [Kiekintveld et al., 2010],
EU-DaC [Vinyals et al., 2010b], and MaxSum [Farinelli et
al., 2008] on binary constraint networks with random, regular
grid, and scale-free topologies. We did not adopt DaCSA
since it was outperformed by EU-DaC [Vinyals et al., 2010b].

Details on how to generate instances for each topology are
as follows.

random : We created an n-node network whose density is
the ratio of d, resulting in bn(n− 1) ∗ dc edges in total.

regular grid : We created an n-node network arranged in a
rectangular grid, where each node is connected to four
neighboring nodes (except when it is located on the
boundary).

scale-free : We created an n-node network based on the
Barabasi-Albert (BA) model, where starting from two
nodes with an edge, we added a node one-by-one while
randomly connecting the added node to two existing
nodes by new edges. Such two nodes are selected with
probabilities that are proportional to the numbers of
their connected edges. The total number of edges is
2(n− 2) + 1.

We created 20 instances for each of these three topologies.
For each instance of these networks, we ascertained its con-
nectivity. Namely, there is no disconnected sub-network in
every instance.

We created a COP instance for each instance of networks,
where the domain size of all variables (nodes) is three and the
cost value of binary cost functions (edges) is randomly se-
lected from {1, 2, ..., 105}. Then, following the convention in
the literature, we created a DCOP instance so that one agent
has exactly one variable and its related cost functions.

Our experiments were conducted on a discrete event sim-
ulator that simulates concurrent activities of multiple agents
using the cycle-base mechanism, where the agents repeat the
cycle of receiving messages, perform local computations, and
sending messages until a termination condition is met.

To evaluate the performance of each algorithm, we mea-
sured the number of cycles, simulated runtime [Sultanik et al.,
2007] and quality upper bound on this simulator. The number
of cycles is one of the conventional measures to evaluate the
performance of the DisCSP or DCOP algorithm, while the
simulated runtime is a relatively new measure, which corre-
sponds to the longest sequence of runtime on the agents. For
each algorithm, the quality upper bound is computed by di-
viding the obtained global cost by BestLB that is computed
by DeQEDa. Note that the obtained global cost is the one
at a cutoff cycle for DeQEDm while BestUB (the best upper
bound found by a cutoff cycle) for other algorithms including
DeQEDa. On the quality upper bound, a figure closer to one
is better.

Since all of the algorithms are incomplete, our interest is on
how quickly each of these algorithms finds a better solution.
Therefore, in our experiments, we observed an average qual-
ity upper bound for each algorithm when cutting off a run at
a certain cycle bound, which ranges from 50 to 500 cycles in
steps of 50. Furthermore, since these algorithms clearly have
different computational costs in one cycle, we also observed
an average quality upper bound against simulated runtime at
the above cut-off cycles.

These experiments were conducted on an Intel Core-i7
2600@3.4GHz with 4 Cores, 8 threads and 8 GB memory.
The main codes of DeQED and EU-DaC were written in Java
and compiled with JDK 1.6.0-20 on Ubuntu 11.10 (64 bit).
We downloaded DALO from the USC DCOP Repository and
used the DALO-t with t = 1. On the MaxSum algorithm,
we used the code in the FRODO version 2.10.5 [Léauté et al.,
2009] with a default setting.

The results are shown in Figure 2, where the left part de-
noted by (a) shows the average quality upper bound against
the number of cycles and the right part denoted by (b) shows
the average quality upper bound against simulated runtime.



(a) the  number of cycles (b) simulated runtime (ms)
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Figure 2: Average quality upper bounds for (1) 1000-node
random networks with density 0.005, (2)1000-node regular
grid networks and (3) 1000-node scale-free networks.

In these figures, we omit the results of DALO and EU-DaC
because their quality upper bounds were more than 1.4, even
in the best case. Moreover, EU-DaC spent more than 10,000
ms of the simulated runtime to finish 500 cycles. Thus, we
plot the average quality upper bounds with error bars only for
MaxSum, DeQEDm and DeQEDa for readability.

Figure 2 shows that DeQED clearly outperformed Max-
Sum for any topology of networks. In particular, DeQED
converged quite efficiently in the simulated runtime. One rea-
son for this efficiency is that the computational cost of each
agent in DeQED increases only linearly with the number of
its neighbors, while that in MaxSum increases exponentially
[Farinelli et al., 2008].

When comparing DeQEDm and DeQEDa, we observed
that DeQEDa generally shows faster convergence than
DeQEDm with respect to the number of cycles, but DeQEDm

is slightly faster than DeQEDa with respect to simulated run-
time. The reason behind this difference is that the agents
in DeQEDa are required to collect and compute upper and
lower bounds on-line, which imposes extra computation on
the agents. On the other hand, the agents in DeQEDm do not
have to perform such extra computation.

We should also point out that EU-DaC, another algorithm

DeQEDa EU-DaC
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Figure 3: Bound guarantees of DeQEDa and EU-DaC for (1)
100-node random networks with density 0.05, (2)100-node
regular grid networks and (3) 100-node scale-free networks

based on the DaC framework, did not perform well especially
in simulated runtime. An agent in EU-DaC solves the local
problem that includes the copies of variables of neighboring
agents and tries to make an agreement on the assignments
between their copies and originals. Thus, even for the DCOP
with one variable per agent, EU-DaC has to solve much larger
local problems, which clearly increases the cost of local com-
putations. On the other hand, in DeQED, the local problem
of each agent is still trivial for the DCOP with one variable
per agent.

Moreover, we also compared DeQEDa and EU-DaC with
respect to the tightness of their bounds as the cycle proceeds.
Similar to the experiments in [Vinyals et al., 2010b], we mea-
sured bound guarantee at a certain number c of cycles for
each algorithm A, which is defined by

bgA(c) ≡ BestLBA(c)/BestUBA(c)× 100,

whereBestLBA(c) is the highest lower bound that algorithm
A has found by the cycle of c, and BestUBA(c) is the low-
est upper bound that algorithm A has found by the cycle of
c. The results are shown in Figure 3, where the x-axis indi-
cates the number of cycles and the y-axis indicates the bound
guarantees averaged over 20 instances. From these results,
we can say that DeQEDa can always obtain tighter bounds
than EU-DaC.

5 Conclusions
We provided a new DCOP algorithm called DeQED (Decom-
position with Quadratic Encoding to Decentralize). The con-
tribution of DeQED is twofold.

First, DeQED does not essentially increase the complexity
of local subproblems. The previous DaC-based algorithms,
DaCSA and EU-DaC, solve the local problem that includes
the copies of variables of neighboring agents, which clearly
increases the cost of local computations. However, in De-
QED, the local problem of each agent is trivial.

Second, it allows agents to avoid exchanging (primal) vari-
able values in the coordinate stage. The agents in DaCSA and
EU-DaC need to exchange (primal) variable values. How-
ever, the agents in DeQED can exchange only the values of
Lagrange multipliers.

Furthermore, we experimentally confirmed that DeQED
worked significantly better than other representative incom-
plete DCOP algorithms.
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