Programming and Model checking with Hypergraphs

Kazunori Ueda
(special thanks to many students of mine)
Waseda University and
National Institute for Informatics
July 2013
Three interrelated groups

Three cross-cutting concerns
Demo-driven introduction to:

- **LMNtal (pronounce: “elemental”), a programming and modeling language based on (a class of) hierarchical (hyper)graph rewriting**
 - what is it about?
 - what can it do?

- **State-space search and model checking with LMNtal**
 - what are the strengths of the LMNtal model checker?
 - how does an IDE play an important role?
LMNtal: a Unifying Language

- **Project LMNtal** (pronounce “elemental”)
- A computational model + language + system
- Started in 2002, now working on the 4G implementation
- >100,000 LOC involving many people over the years
- Focused on verification (parallel state-space search, LTL model checking) since 2007
- Provides LaViT, an IDE with visualizers

- **Ready to use; very low entry barrier**

http://www.ueda.info.waseda.ac.jp/lmntal/

- partly open-source from Google Code

** K. Ueda, *Theoretical Computer Science* 410, 2009
* K. Ueda, *Proc. ICTAC 2009*, LNCS 5684
Programming vs. Modeling

◆ A **programming language** is (usually) to describe algorithms and *execute* them, often *interacting with the real world*.
 - Algorithms are usually deterministic.

◆ A **modeling language** is to describe models (of its target domain) and *simulate* or *verify* them in order to *reason about the real world*.
 - A model changes its state over time and forms a **state space** (= the set of all possible states).
 - Models are usually nondeterministic.
 - **Model checking** explores the state-space to see if the model meets its specification.
A *programming language* and a *modeling language* have different objectives and applications, and our challenge is to have a language and its implementation that handle programming and modeling in a single, unified framework.
LMNtal (pronounce: “elemental”)

\[\mathcal{L} = \text{links} \]
\[\mathcal{M} = \text{multisets/membranes} \]
\[\mathcal{N} = \text{nested nodes} \]
\[ta = \text{transformation} \]
\[\mathcal{L} = \text{language} \]

A language based on hierarchical graph rewriting

An example hierarchical graph. Its intuitive meaning should be almost clear, but you’ll find that it’s not (yet) totally clear.
Structures found in organization (of any kind) and human knowledge have one or both of the following:

- **connectivity**
 - network, graphs, human relationships, ...

- **hierarchy**
 - companies, addresses, domain names, ...

Why not have a **concise** programming language that allows us to represent and manipulate them simultaneously and in a direct manner?
LMNtal: What and Why

- Rule-based concurrent **language** for expressing & rewriting **connectivity** and **hierarchy**
- Substrate **model** of various calculi (λ, π, ambient, etc.) *
- Computation is manipulation of **diagrams**
 - **Links** express 1-to-1 **connectivity**
 - **Hyperlinks** express multipoint **connectivity** **^{**}**
 - **Membranes** express **hierarchy**, **locality** and **first-class multisets**
 - Allows **programming with sets and graphs** and **programming by self-organization**
 - Well-defined notion of **atomic actions**

* K. Ueda, *Proc. RTA 2008*, LNCS 5117
** K. Ueda and S. Ogawa, *Künstliche Intelligenz* 26, 2012
LMNtal allows us to represent computation in terms of hierarchical graph rewriting.

- **Nodes and Links**
 - Nodes represent computational entities.
 - Links connect nodes, indicating interactions or communication channels.

- **Hub Formation**
 - A hub is formed by membrane operations, connecting multiple nodes and links.
 - Hub facilitates many-to-1 communication.

- **Channel Formation**
 - Channels are formed by membrane operations, protecting data transmission.
 - Channels can be send or receive paths.

- **Asynchronous π-calculus**
 - The π-calculus is an asynchronous model of computation.
 - It allows for the description of concurrent and distributed systems.

- **Cyclic Structures**
 - Cyclic structures represent operations that may infinite loops or recursive processes.

- **Map Function**
 - Map function is a closed unary function, transforming input into output.

- **Operation and Buffer Headers**
 - Operations are performed within the context of buffer headers, controlling the flow and protection of data.

This diagram illustrates the interplay between nodes, links, hubs, channels, and the asynchronous π-calculus framework, providing a visual representation of computational processes and interactions.
Graphs and Multisets

- **Graphs**
 - atom
 - bond (link)
 - molecule (process)

- **Multisets**
 - 100 100 100 10 10
 - ... is a kind of graph.
Graphs and Hypergraphs

- **Graphs**
 - Atom
 - Bond (link)
 - Molecule (process)

- **Hypergraphs**
 - Hyperlink
Graphs

A: \'.(2,B,A), \'.(3,C,B), \'.(5,D,C), \'.(7,E,D), [''](E)

A= \'.(2,\'.(3,\'.(5,\'.(7,['']')))\n
A=[2 | [3 | [5 | [7 | []]]]

A=[2,3,5,7]

\n
answer(A),
'+(B,C,A), '*/(D,E,B),
2(D), \times(E), 5(C)

answer('+('*(2,x),5))

answer(2*\times+5)
Multisets (called a cell if enclosed by a membrane)

\[
\{100, 100, 100, 10, 10\}
\]

\[
tube1(X), \{+(X), 'H'(A), 'O'(A,B), 'H'(B), 'H'(C), 'O'(C,D), 'H'(D), 'H'(E), 'O'(E,F), 'H'(F)\}
\]

\[
tube1(\{ 'O'(\'H',\'H'), 'O'(\'H',\'H'), 'O'(\'H',\'H') \})
\]
Demo: Factorial

\[n(1), \ n(2), \ n(3), \ n(4), \ n(5). \]
\[n(A), \ n(B) \ :- \ n(A\times B). \]

Numbers are unary atoms (= atom with a single link)
Demo: Water Jug Problem

- Given a 300ml jug and a 500ml jug, get 400ml of water

- Allowed operations:
 - Empty a jug
 - Fill up a jug with tap water
 - Move a jug’s water to the other until it’s emptied
 - Move a jug’s water until the other jug is filled up

\[
\begin{align*}
\text{300ml} & \quad \text{500ml} \\
\end{align*}
\]
Five philosophers spend their lives thinking and eating. They share a common dining room where there is a circular table surrounded by five chairs, each belonging to one philosopher. In the center of the table there is a large bowl of spaghetti, and the table is laid with five forks. On feeling hungry, a philosopher enters the dining room, sits in his own chair, and picks up the fork on the left of his plate. Unfortunately, the spaghetti is so tangled that he needs to pick up and use the fork on his right as well. When he has finished, he puts down both forks, and leaves the room.

― C.A.R. Hoare (1978)
A flock of mediocre philosophers causes deadlock . . .

. . . but a perverse philosopher avoids deadlock!

See how symmetry is reduced in state-space search.
Demo: List Concatenation

- **append**: a
- **cons**: .
- **nil**: []

\[
a(X_0, Y, Z_0), \cdot(A, X, X_0) \leftarrow \cdot(A, Z, Z_0), a(X, Y, Z)
a(X_0, Y, Z_0), \cdot(X_0) \leftarrow Y = Z_0
\]
Demo: List Concatenation

```
a(X0,Y,Z0), '.'(A,X,X0) :- '.'(A,Z,Z0), a(X,Y,Z)
a(X0,Y,Z0), '.'(X0) :- Y=Z0
```
The left-hand side may match the middle of a list.
Syntax and Semantics, In One Slide

(process) \(P ::= 0 \mid p(X_1, \ldots, X_m) \mid P, P \mid \{P\} \mid T :- T \)

(process template) \(T ::= 0 \mid p(X_1, \ldots, X_m) \mid T, T \mid \{T\} \mid T :- T \)

\(@p \mid \$p[X_1, \ldots, X_m|A] \mid p(*X_1, \ldots, *X_m) \)

(residual) \(A ::= [] \mid X \)

\[
\begin{align*}
(E1) \quad & 0, P \equiv P & (E2) \quad & P, Q \equiv Q, P & (E3) \quad & P, (Q, R) \equiv (P, Q), R \\
&E4 \quad & P \equiv P[Y/X] & \text{if } X \text{ is a local link of } P \\
& (E5) \quad & P \equiv P' \Rightarrow P, Q \equiv P', Q & (E6) \quad & P \equiv P' \Rightarrow \{P\} \equiv \{P'\} \\
& (E7) \quad & X = X \equiv 0 & (E8) \quad & X = Y \equiv Y = X \\
&E9 \quad & X = Y, P \equiv P[Y/X] & \text{if } P \text{ is an atom and } X \text{ occurs free in } P \\
& (E10) \quad & \{X = Y, P\} \equiv X = Y, \{P\} & \text{if exactly one of } X \text{ and } Y \text{ occurs free in } P \\
& (R1) \quad & \frac{P \rightarrow P'}{P, Q \rightarrow P', Q} & (R2) \quad & \frac{P \rightarrow P'}{\{P\} \rightarrow \{P'\}} & (R3) \quad & \frac{Q \equiv P}{P \rightarrow P', P' \equiv Q'} \\
& (R4) \quad & \frac{\{X = Y, P\} \rightarrow X = Y, \{P\}}{\text{if } X \text{ and } Y \text{ occur free in } \{X = Y, P\}} \\
& (R5) \quad & \frac{X = Y, \{P\} \rightarrow \{X = Y, P\}}{\text{if } X \text{ and } Y \text{ occur free in } P} \\
& (R6) \quad & T \theta, (T :- U) \rightarrow U \theta, (T :- U)
\end{align*}
\]
Implementation Overview

<table>
<thead>
<tr>
<th>Tool</th>
<th>Year</th>
<th>Language</th>
<th>Source Code</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMNtal-Java</td>
<td>2002–</td>
<td>Java</td>
<td>40kLOC</td>
<td>compiler + runtime w/FLI</td>
</tr>
<tr>
<td>Unyo-Unyo</td>
<td>2006–</td>
<td>Java</td>
<td>18kLOC</td>
<td>execution visualizer</td>
</tr>
<tr>
<td>SLIM</td>
<td>2007–</td>
<td>C</td>
<td>25kLOC</td>
<td>smaller and faster runtime parallel state-space search and model checker</td>
</tr>
<tr>
<td>LaViT</td>
<td>2008–</td>
<td>Java</td>
<td>18kLOC</td>
<td>IDE w/state-space visualizer</td>
</tr>
</tbody>
</table>

LaViT & Unyo-Unyo

- **frontend**
 - LMNtal program
 - LMNtal-Java compiler
 - LMNtal VM code (SSA)

- **backend**
 - property
 - SLIM runtime + modelchecker
 - LMNtal-Java runtime

- **result**
 - veri. result
 - exe. result
LMNtal is good at modeling systems which computer-aided verification is concerned with, e.g.,
- state transition systems (automata),
- multiset rewriting systems, and
- concurrent systems.

LMNtal is at the same time a full-fledged programming language allowing infinite states.
- No gap between modeling and programming languages (cf. SPIN, nuSMV, . . .)
- As a fine-grained concurrent language, supporting verification is highly desirable

Why not build an integrated development and verification environment?
LMNtal Model Checker

{wSize(2), nMAX(3), idMAX(3), sender{n(0), nextId(0), ...}

p is defined as “an 'error' atom exists”

p = error :- |

Property in LTL “always not p”

[[]!]p

LTL formula

LTL2BA

Büchi automaton

LMNtal program

propositional symbol definition

SLIM runtime

intermediate code

LMNtal compiler

counterexample

OK
Model Checking in LMNtal: Strengths

- LaViT supports the understanding of models with and without errors, not just bug catching
 - workbench for designing and analyzing models
 - complementary to fast, black-box checkers
- Hierarchical graphs feature built-in symmetry reduction
Model Checking in LMNtal: Challenges

- Challenges (some done, some ongoing):
 - States are graphs; efficient state management requires both hashing and graph isomorphism
 - Scalable parallel model checking
 - Real-time model checking
 - Extension to hypergraphs
Demo: The Tower of Hanoi

poles(p([1,2,3,4,5,6,99]),p([99]),p([99])).

P1=p([h1|t1]), P2=p([h2|t2]) :- h1<t2 | P1=p(T1), P2=p([h1,h2|t2]).
SWP: transmission protocol used in TCP

- Sends data packets (up to window size) without waiting for acknowledgment
 - Rollbacks if some item seems lost
- Channels may lose data and acks

Demo: Sliding Window Protocol (SWP)
Managing the state space of graphs requires both *space-efficient* graph representation and *time-efficient* isomorphism checking. They are supported by:

- Hashing with parallel hashtable
- Encoding (serialization)
 - Non-canonical encoding
 - Canonical encoding (labelling)
- Backward execution
- Parallel state-space search
- Partial-order reduction

<table>
<thead>
<tr>
<th>Original</th>
<th>>2KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoded</td>
<td>70B</td>
</tr>
</tbody>
</table>
Parallelizing the LMNtal Model Checker*

- Construct a state-space graph by *stack-slicing parallel DFS*
- Apply an DiVinE-like algorithm to search a counterexample
- Built by (i) analyzing the sequential model checker (25kLOC), (ii) ensuring thread safety, and (iii) improving scalability on many-core processors
 - dynamic load balancing, parallel hash table
 - introducing parallel memory allocator

Speedup of the LMNtal Parallel Model Checker

AMD Opteron (2.3GHz) 12-core x 4, 256GB of memory

now handles \(>10^8\) states
Hyperlinks: motivations

- Need to express references (pointers), multipoint connection, etc.
- Could be represented using membranes, but
 - membranes are heavyweight for just expressing partnership and sharing (rather than localization)
 - membranes are strictly hierarchical.
Hyperlinks: constructs

- **Creating**

 $H :- \text{new}($x,$att) \mid \ldots \ p(...$x...)$ \ldots$

 $H :- \ldots \ p(...!X:$att...)$ \ldots$

- **Typechecking**

 $\ldots \ p(...$x...)$ \ldots :- \ hlink($x) \mid B$

 $\ldots \ p(...!X...)$ \ldots :- B

 ... and other primitives for unary types (==, ¥==, ...)

- **Fusing**

 $H :- \ldots \mid \ldots \ !X \gg \!Y \ldots$

 cf. $H :- \ldots \mid \ldots \ X = Y \ldots$

- **Cardinality**

 $H :- \text{num}(!X,$n) \mid \ldots$

- **Subgraph copying**

 $H :- \ \text{hlground}($x,$att) \mid \ p($x)$, \ p($x)$

- Attributes provide various views (slices) of a single hypergraph.
Question: Links are a special case of hyperlinks. Why not unify them and support just hyperlinks?

Answer 1: No, we want to implement them in different ways.
- Implementation of links can be much simpler.

Answer 2: Yes, conceptually, and static analysis could distinguish between links and hyperlinks.
- However, programmers should probably be aware of the distinction.
Applications of Hypergraph rewriting

- Any apps that require rich data structures, e.g.,
 - Glass-box constraint programming
 - Type systems (and any formal systems in general)
 - Encoding of various calculi
 - including the λ–calculus
[In theory terms] Simple (re)formulation of the pure / strong / full λ–calculus using a graph rewriting model + language LMNtal

[In implementation terms] Execution engine of the pure λ–calculus that allows out-of-order execution of (almost) $O(1)$-time microsteps
The (Pure) λ-Calculus

- **Syntax of lambda terms**

 $M, N ::= x$ (variable, name)
 $\mid \lambda x. M$ (abstraction)
 $\mid MN$ (application)

- **Reduction relations**

 $(\lambda x. M) N \rightarrow M[x := N]$ (β-reduction)

 $\frac{M \rightarrow M'}{MN \rightarrow M'N}$
 $\frac{N \rightarrow N'}{MN \rightarrow MN'}$
 $\frac{M \rightarrow M'}{\lambda x. M \rightarrow \lambda x. M'}$
The (Pure) \(\lambda \)-Calculus

\[(\lambda x. M)N \rightarrow M[x := N] \]
(\(\beta \)-reduction)

The usual impl. of functional programming languages \textbf{betray} the very spirit, i.e., the higher-order nature, of the \(\lambda \)-calculus.
— Asperti (1998)

\[M \rightarrow M' \quad N \rightarrow N' \]
\[\frac{M N \rightarrow M' N}{\frac{M \rightarrow M'}{M N \rightarrow M' N}} \]
\[\frac{M \rightarrow M'}{\lambda x. M \rightarrow \lambda x. M'} \]

\(\text{éminence grise of the } \lambda \text{-calculus} \)
— Abadi et al. (1990)

\[\frac{M \rightarrow M'}{M N \rightarrow M' N} \]
\[\frac{N \rightarrow N'}{M N \rightarrow M' N'} \]
\[\frac{M \rightarrow M'}{\lambda x. M \rightarrow \lambda x. M'} \]

\(\text{Reduction relations} \)
Encoding λ-Terms: Examples

$\lambda f. \lambda x. x$

$\lambda f. \lambda x. f(fx)$

$s(s(0))$

Unique up to $\text{cp}+\text{rm}$’s equational theory

($= \text{ACU} : \text{associativity} \& \text{commutativity with unit}$)
Church Numeral Exponentiation

- Church numeral 2: \(\lambda f. \lambda x. f(x) \)

\[
\text{lambda}(cp(F0, F1), \\
\quad \text{lambda}(X, \text{apply}(F0, \text{apply}(F1, X))), N).
\]

- \(3^2: (((\lambda m. \lambda n. n m) 3) 2)\)

\[
\begin{align*}
N = \text{two} & \quad : - \\
& \quad N = \text{lambda}(cp(F0, F1), \\
& \quad \quad \text{lambda}(X, \text{apply}(F0, \text{apply}(F1, X)))). \\
N = \text{three} & \quad : - \\
& \quad N = \text{lambda}(cp(F0, cp(F1, F2)), \\
& \quad \quad \text{lambda}(X, \text{apply}(F0, \text{apply}(F1, \text{apply}(F2, X)))))).
\end{align*}
\]

\[
\text{res} = \text{apply}(\text{apply}(\text{apply}(\text{two}, \text{three}), \text{fv}(\text{succ})), \text{fv}(0)).
\]

\[
\text{H} = \text{apply}(\text{fv}(\text{succ}), \text{fv}(I)) \quad : - \quad \text{int}(I) \mid \text{H} = \text{fv}(I+1).
\]
The Encoding (1/2)

- \(H = \text{apply}(\lambda(A,B), C) :- H = B, A = C.\)

- \(\lambda(A,B) = \text{cp}(C,D,!L,!M) :-\)
 \(C = \lambda(E,F), D = \lambda(G,H),\)
 \(A = \text{cpc}(E,G,!L1,!M1), B = \text{cp}(F,H,!L2,!M),\)
 \(\text{sub}(!L1,!L2,!L), \text{subc}(!M1).\)

- \(\text{apply}(A,B) = \text{cp}(C,D,!L,!M) :-\)
 \(C = \text{apply}(E,F), D = \text{apply}(G,H),\)
 \(A = \text{cp}(E,G,!L,!M1), B = \text{cp}(F,H,!L,!M2), !M = \text{jn}(!M1,!M2).\)

- \(\text{cp}(A,B,!L1,!M1) = \text{cp}(C,D,!L2,!M2), \text{sub}(!L1,!L2,!L) :-\)
 \(A = C, B = D, \text{sub}(!L1,!L2,!L), !L1 > < !M1, !L2 > < !M2.\)

- \(\text{cp}(A,B,!L1,!M1) = \text{cp}(C,D,!L2,!M2), \text{top}(!L2) :-\)
 \(C = \text{cpc}(E,F,!L1,!M11), D = \text{cpc}(G,H,!L1,!M12),\)
 \(A = \text{cp}(E,G,!L2,!M21), B = \text{cp}(F,H,!L2,!M22),\)
 \(!M1 = \text{jn}(!M11,!M12), !M2 = \text{jn}(!M21,!M22).\)

- \(\text{fv}($u) = \text{cp}(A,B,!L,!M) :- \text{unary}($u) |\)
 \(A = \text{fv}($u), B = \text{fv}($u), !L > < !M.\)
The Encoding (2/2)

\[
\begin{align*}
\lambda(A, B) &= \text{rm} \quad \text{:-} \quad A = \text{rmc}, \ B = \text{rm}. \\
\text{apply}(A, B) &= \text{rm} \quad \text{:-} \quad A = \text{rm}, \ B = \text{rm}. \\
\text{cp}(A, B, !L, !M) &= \text{rmc} \quad \text{:-} \quad A = \text{rmc}, \ B = \text{rmc}, \ !L >> !M. \\
\text{cpc}(A, B, !L, !M) &= \text{rm} \quad \text{:-} \quad A = \text{rm}, \ B = \text{rm}, \ !L >> !M. \\
A &= \text{cp}(B, \text{rm}, !L, !M) \quad \text{:-} \quad A = B, \ !L >> !M. \\
A &= \text{cp}(\text{rm}, B, !L, !M) \quad \text{:-} \quad A = B, \ !L >> !M. \\
\text{rmc} &= \text{rm} \quad \text{:-} . \\
\text{fv}(u) &= \text{rm} \quad \text{:-} \quad \text{unary}(u) | .
\end{align*}
\]

✓

\[
\begin{align*}
\text{subc}(!L1), \ \text{sub}(!L1, !L2, !L3) &= \quad !L2 >> !L3. \\
A &= \text{cp}(B, C) \quad \text{:-} \quad A = \text{cp}(B, C, !L, !M), \ \text{top}(!L), \ \text{topc}(!M). \\
\text{top}(!L), \ \text{topc}(!L) &= \quad . \\
!Y &= \text{jn}(!X, !X) \quad \text{:-} \quad !X >> !Y.
\end{align*}
\]

✓: Eight essential rules (the other rules are for tidying up and initialization)
Related Work

- $\lambda\sigma$-calculus (explicit substitutions)

- Encodings into Interaction Nets have been either
 - weak (Sinot, ...)
 - $x\ M_1\ M_2\ ...\ M_n\ (n \geq 0)$
 - $\lambda\ x\ .\ M$ (abstraction body not evaluated)
 - or
 - not very simple (Lamping, Asperti, Mackie, ...)
 - in the sense that they “decorate” graphs

→ Does LMNtal provide useful constructs and techniques for more concise encoding?
Graphically (1/2)

H = apply(lambda(A, B), C) :- H = B, A = C.
Graphically (2/2)

(a_c) Oh, my partner!

(c_c1): match

(c_c2): mismatch

I’ll copy you!

I’ll go anti-clockwise.

I’ll go clockwise.

I’m the original.

I’ll go clockwise.
The RHS of the I_c rule

parent color

a fresh color

I’ll go anti-clockwise.

I’ll go clockwise.
The Key Idea

- Which of \texttt{c_c1} and \texttt{c_c2} to apply?
- Existing methods used two colors or natural numbers to label \texttt{cp}'s
- We employ hierarchical colors (= local names)
 - whenever a \texttt{cp} encounters a \texttt{l}, two complementary \texttt{cp}'s are created to copy the abstraction.
 - when all the new \texttt{cp}'s running anti-clockwise hit their partners and disappear, the remaining \texttt{cp}'s become \texttt{cp}'s.
Colors are encoded using hyperlinks.
Promotion (color fusion) (cf. “retirement”)

No more anticlockwise cp

Good news: Promotion need not be instantaneous; can be delayed safely.
Related work: Models and languages with multisets and symmetric join

- (Colored) Petri Nets
- Production Systems and RETE match
- Graph transformation formalisms (e.g., Groove)
- CCS, CSP
- Concurrent logic/constraint programming
- Linda
- Linear Logic languages
- Interaction Nets
- Chemical Abstract Machines
- Gamma model
- Maude
- Constraint Handling Rules
- Mobile ambients
- P-system, membrane computing
- Amorphous computing
- Bigraphs
Models and languages with membranes + hierarchies

- (Colored) Petri Nets
- Production Systems and RETE match
- **Graph transformation formalisms** *
- CCS, CSP
- Concurrent logic/constraint programming
- Linda *
- Linear Logic languages
- Interaction Nets
- **Chemical Abstract Machines**
- Gamma model
- Maude
- Constraint Handling Rules
- Mobile ambients
- P-system, membrane computing
- Amorphous computing
- **Bigraphs**

* : some versions feature hierarchies

- Statecharts
- Seal calculus
- Kell calculus
- Brane calculi
- κ
Experiences and Conclusions

◆ Designed and implemented (Hyper)LMNtal as a **unifying computational model offering fine-grained concurrency**

◆ **Graph-based model checking (with up to ~10^8 states)** works with many implementation techniques

 ● Need to maintain one than one algorithm

◆ **Built an LMNtal IDE as a unified framework of computation and verification**

 ● **Visualization** turned out to be very useful for understanding systems

◆ http://www.ueda.info.waseda.ac.jp/lmntal/ (choose LaViT)