
Learning Reductions with Descriptive
Complexity and SAT Solvers

Charles Jordan and Łukasz Kaiser

JST ERATO and LIAFA, CNRS

July 26, 2013

The Magic of SAT

find x : “x is good”

Reduction Finding

find r : ∀x (x ∈ P↔ r(x) ∈ Q)

Beyond SAT
find f : ∀x “f (x) is good”

Questions
How to represent r, P, Q and x?
How to approach the problem? (CEGAR vs QBF vs ASP)
How do current tools perform?

Motivation

Finding Simple Objects

Often, we look for simple objects
Gadgets, simpler formulas, reductions, counter-examples.

Computers can help!

Related Work
J., K. Experiments with Reduction Finding. SAT 2013.
J., K. Benchmarks from Reduction Finding. QBF 2013.
J., K. Learning Programs as Logical Queries. LTC 2013.
Carmosino, Immerman, J. Experimental Descriptive
Complexity. Kozen Festschrift, 2012.
Itzhaky, Gulwani, Immerman, Sagiv. A simple inductive
synthesis methodology and its applications. OOPSLA 2010.
Crouch, Immerman, Moss. Finding Reductions
Automatically. Gurevich Festschrift, 2010.

Overview

What is new?

Unify work on synthesis and descriptive complexity
Free, open reduction-finding tools
Comparison of many approaches
Benchmark instances

Implementations
1 http://toss.sf.net/reduct.html

2 http://toss.sf.net/reductGen.html

3 http://www-erato.ist.hokudai.ac.jp/˜skip/de

4 http://toss.sf.net/gameGen.html

Focus on performance of tools.

http://toss.sf.net/reduct.html
http://toss.sf.net/reductGen.html
http://www-erato.ist.hokudai.ac.jp/~skip/de
http://toss.sf.net/gameGen.html

How do we represent
reductions?

Representing Reductions

reduction r : ∀x (x ∈ P↔ r(x) ∈ Q)

Standard reductions
r is a (ptime, logspace, . . .) Turing machine
x is a word
P,Q are sets of words given by Turing machines

Reductions in logic
r is a (quantifier-free, first-order, . . .) query
x is a relational structure
P,Q are sets of structures given by formulas

Question: is there a useful correspondence?

Relational Structures and Logics
Relational Structures A = (U, RA

1 , RA
2 , . . . , RA

r , cA
1 , . . . , cA

d)

s

t

First-Order and Second-Order Logic over σ = {E}

Clique (FO): ∀x, y : (x = y ∨ E(x, y))

3-colorable (∃SO):

∃R, G, B ∀x, y : (R(x)∨ G(x)∨ B(x)) ∧(
E(x, y)→ ¬ ((R(x)∧ R(y)) ∨ (G(x)∧ G(y)) ∨ (B(x)∧ B(y)))

Descriptive Complexity

Decision problem P

Computational complexity: resources needed to check it

Descriptive complexity: expressive power needed to define it

The two notions are isomorphic!
“Hard to check” ≡ “Requires expressive language to define”

Characterizations of complexity classes

PSPACE = SO(TC)
NP = SO∃, coNP = SO∀, PH = SO
P = FO(LFP)
NL = FO(TC) . . .

Queries

Queries (Interpretations) q = (k,ϕ0,ϕ1, . . . ,ϕr,ψ1, . . . ,ψd)

k is the dimension
ϕ0(x1, . . . , xk) defines the new universe
ϕi(x1, . . . , xkai) define the new relations
ψj(x1, . . . , xk) define the new constants

Example

(k = 2, ϕ0 = >, ϕ(x1, x2, x3, x4) = (x1 = x3)∧ E(x2, x4))

Choice of logic ≡ Complexity of query

Reductions

reduction r : ∀x (x ∈ P↔ r(x) ∈ Q)

Weak Reductions Suffice!
Quantifier-free projections suffice for natural problems.
No need to prove things can’t be done in polytime1.

Example: http://toss.sf.net/reduct.html

Same Example:

q := 〈k := 1, ϕ0 := >, ϕ1(x1, x2) := x1 = s ∨ x2 = t ∨ E(x2, x1) 〉

1E.g., Berman-Hartmanis conjecture holds for first-order projections!

http://toss.sf.net/reduct.html

Decidability and Parameters

∃r : ∀x : (x ∈ P↔ r(x) ∈ Q)

But this formula is infinite!

Decidability via Parameters:
k dimension of the reduction
n size of examples (x)
c number of conjunctions in DNF

The formula is finite!
In spirit, a Σp

2 problem.

How to approach the problem?
CEGAR vs QBF vs ASP

Approaches to Σp
2

Quantified Boolean Formula (QBF) Solvers
PSPACE-complete, one call suffices
CNF-conversion, prenexing: problematic
3QBF CNF, 2QBF CNF (negated), qpro (NNF), CQBF
(experimental)

Disjunctive Answer Set Program (ASP) Solvers
Disjunctive≡ Σp

2, one call suffices
Faber, Ricca. Solving hard ASP programs efficiently NMR
2005.
Few solvers: claspD, cmodels, gnt(2)

Counter-example guided abstraction refinement (CEGAR)
Crouch, Immerman, Moss. Finding reductions
automatically. Gurevich Festschrift, 2010.
Janota, Marques-Silva. Abstraction-based algorithm for
2QBF. SAT 2011.
Janota, Klieber, Marques-Silva, Clarke. Solving QBF with
counterexample guided refinement. SAT 2012.

CEGAR, SAT and Σp
2

Find counter-example
to current candidate

Choose initial
candidate

Output
current candidate

None found

Find candidate correct
on current examples

Output
“Negative”

None found

Figure: Counter-example guided abstraction refinement (CEGAR)

How do current tools perform?

Compared

Instances
2304 instances per parameter set, 6+ sets, plus hard instances

DE (incremental)2

MiniSat-23, GlueMiniSat, CryptoMiniSat, BDD/CUDD

Toss (not incremental)
MiniSat-2, GlueMiniSat, Intel Decision Procedure Toolkit

QBF (qdimacs+nqdimacs)
rareqs, depqbf, QuBE, sKizzo, CirQit (qpro too)

ASP
(lparse, gringo) × (gnt2, cmodels, claspd)

Reduction Finder

2Preliminary runs with lingeling, treengeling, plingeling, PMSat, . . .
3No simplification – https://github.com/niklasso/minisat/issues/3

https://github.com/niklasso/minisat/issues/3

Reduction Finding Results

Unsolved cases of 48× 48 = 2304: CEGAR vs QBF vs claspD

(c, n) (1, 3) (2, 3) (3, 3) (1, 4) (2, 4) (3, 4)
de-gms 0 0 10 0 5 103
de-cudd 0 116 537 0 186 722
rareqs 0 0 16 19 65 204
depqbf 0 142 547 16 297 711
qube 10 536 949 82 760 1082
cirqit 58 673 1138 511 1092 1357
cirqit’ 157 523 903 – – –
skizzo 522 1058 1156 975 1327 1434
gringo 40 393 590 72 593 836
lparse 51 396 605 75 635 850

RedFind 1 152 396 2 347 547

CEGAR Results

REACH to REACH, k = 1, scaling n with c = 1, 2

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25

de-ms
de-gms
de-cms
de-cudd
rareqs

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25

de-ms
de-gms
de-cms
de-cudd
rareqs

Dimension 2 (c = 1)

de-ms de-gms de-cms de-cudd rareqs

k = 1, n = 3 0.05 0.06 0.08 0.07 0.03
k = 2, n = 2 0.06 0.11 0.28 6.30 0.06
k = 2, n = 3 3562.14 1696.26 1755.03 timeout 3267.10

QBF Gallery 2013 (Lonsing, Seidl, van Gelder)

14 QBF solvers on random sample of k = 1, c = 3, n = 4.

of instances (of 150) solved in 900s.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/

http://www.kr.tuwien.ac.at/events/qbfgallery2013/

Outlook

What can we do?
Simple evaluation and reduction finding
http://www-erato.ist.hokudai.ac.jp/˜skip/de

http://toss.sf.net/reduct.html

Useful as a debugger!
Source of uniform instances. parameters→hardness

What is hard?
high-dimensional reductions
symmetry breaking in example finding problems
using GPUs, massively parallel machines

http://www-erato.ist.hokudai.ac.jp/~skip/de
http://toss.sf.net/reduct.html

Related Future Work

Finding Fast Programs

Learn LFP equivalents to SO
Examples: parity games, graph isomorphism, SAT
LFPTest.native

Solving Games

Does Player 1 win?
http://toss.sf.net/gameGen.html

Note: CEGAR loses to other solvers!

Learning Games

Given set of example plays, learn rules
Examples: Connect4, gomoku, chess
J.,K. Learning Programs as Logical Queries, LTC 2013.

Much More!

http://toss.sf.net/gameGen.html

Reason to Hope

Ranges
Start with size-2 examples, then move to 3. . .
Very big performance gain. Not enough for k = 3.

Encodings & More
QBF/SAT 2013 were inspiring – much to do!

Parallel & supercomputing
Cube and conquer? (march, treengeling, . . .)

Benchmarks
New QBF benchmarks, new QBF formats, ASP/etc.
benchmarks in progress

New Ideas and Approaches?
We’re new!

Thank you!

	Introduction
	Experiments
	Future

