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The Magic of SAT

find x : “x is good”

Reduction Finding
findr: Vx(x e P+ r(x) € Q)

Beyond SAT
find f : Vx “f(x) is good”

@ How to represent r, P, Q and x?
e How to approach the problem? (CEGAR vs QBF vs ASP)
e How do current tools perform?




Motivation

Finding Simple Objects

Often, we look for simple objects
o Gadgets, simpler formulas, reductions, counter-examples.

Computers can help!

Related Work

e J., K. Experiments with Reduction Finding. SAT 2013.

e J., K. Benchmarks from Reduction Finding. QBF 2013.

e ], K. Learning Programs as Logical Queries. LTC 2013.

@ Carmosino, Immerman, J. Experimental Descriptive
Complexity. Kozen Festschrift, 2012.

o Itzhaky, Gulwani, Immerman, Sagiv. A simple inductive
synthesis methodology and its applications. OOPSLA 2010.

@ Crouch, Immerman, Moss. Finding Reductions
Automatically. Gurevich Festschrift, 2010.



Overview

What is new?

@ Unify work on synthesis and descriptive complexity
@ Free, open reduction-finding tools
e Comparison of many approaches

@ Benchmark instances

Implementations
@ http://toss.sf.net/reduct.html
@ http://toss.sf.net/reductGen.html
@ http://www-erato.ist.hokudai.ac.jp/~skip/de
© http://toss.sf.net/gameGen.html

Focus on performance of tools.


http://toss.sf.net/reduct.html
http://toss.sf.net/reductGen.html
http://www-erato.ist.hokudai.ac.jp/~skip/de
http://toss.sf.net/gameGen.html

How do we represent
reductions?



Representing Reductions

reductionr: Vx(x € P < r(x) € Q)

Standard reductions
e ris a (ptime, logspace, ...) Turing machine
@ xisaword

@ P,Q are sets of words given by Turing machines

Reductions in logic
@ ris a (quantifier-free, first-order, ...) query
@ x is a relational structure

@ P,Q are sets of structures given by formulas

Question: is there a useful correspondence?



Relational Structures and Logics

Relational Structures A = (U,R{,RY,..., R4, ¢}, ..., c})

First-Order and Second-Order Logic over o = {E}
Clique (FO): Vx,y: (x =y V E(x,y))
3-colorable (4S0):

3dR,G,B Vx,y: (R(x)V G(x) VB(x)) A
(E(x,y) = = ((R(x) AR(y)) V (G(x) AG(y)) V (B(x) AB(y)))



Descriptive Complexity

Decision problem P
Computational complexity: resources needed to check it

Descriptive complexity: expressive power needed to define it

The two notions are isomorphic!
“Hard to check” = “Requires expressive language to define”

Characterizations of complexity classes

@ PSPACE = SO(TC)

@ NP =S0d, coNP =SS0V, PH =SO
e P =FO(LFP)

e NL = FO(TQ)...




Queries

Queries (Interpretations) g = (k, 9o, ¢1,..., @, P1,...,Py)
@ kis the dimension
@ @o(xq,...,x;) defines the new universe
® ©;(x1,...,X,) define the new relations

@ j(xy,...,x;) define the new constants

Example

(k=2 00=T, @(x1,x2,x3,x4) = (x1 = x3) NE(x2,x4) )

Choice of logic = Complexity of query



Reductions

reductionr: Vx(x € P+ r(x) € Q)

o—@

Weak Reductions Suffice!
Quantifier-free projections suffice for natural problems.
No need to prove things can’t be done in polytime!.

Example: http://toss.sf.net/reduct.html

Same Example:

g=(k:=1, @o:=T, @1(x1,x2) :=x1 =5V x2 =1tV E(x2,x1))

E.g., Berman-Hartmanis conjecture holds for first-order projections!


http://toss.sf.net/reduct.html

Decidability and Parameters

Jr:Vx:(xeP+rx)eQ)

But this formula is infinite!

Decidability via Parameters:
k dimension of the reduction
n size of examples (x)

¢ number of conjunctions in DNF

The formula is finite!
In spirit, a X5 problem.



How to approach the problem?
CEGAR vs QBF vs ASP



Approaches to 2}

Quantified Boolean Formula (QBF) Solvers

@ PSPACE-complete, one call suffices

@ CNF-conversion, prenexing: problematic

e 3QBF CNEF 20QBF CNF (negated), gpro (NNF), CQBF
(experimental)

Disjunctive Answer Set Program (ASP) Solvers

e Disjunctive = %}, one call suffices

@ Faber, Ricca. Solving hard ASP programs efficiently NMR
2005.

@ Few solvers: claspD, cmodels, gnt(2)

Counter-example guided abstraction refinement (CEGAR)

@ Crouch, Immerman, Moss. Finding reductions
automatically. Gurevich Festschrift, 2010.

@ Janota, Marques-Silva. Abstraction-based algorithm for
2QBE. SAT 2011.

@ Janota, Klieber, Marques-Silva, Clarke. Solving QBF with
counterexample guided refinement. SAT 2012.



CEGAR, SAT and ZZ

l Choose initial

candidate
Find counter-example Find candidate correct
to current candidate on current examples
None found \_/ None found
Output Output
current candidate “Negative”

Figure: Counter-example guided abstraction refinement (CEGAR)



How do current tools perform?



Compared

Instances
2304 instances per parameter set, 6+ sets, plus hard instances

DE (incremental)?
MiniSat-23, GlueMiniSat, CryptoMiniSat, BDD/CUDD

Toss (not incremental)
MiniSat-2, GlueMiniSat, Intel Decision Procedure Toolkit

OBF (gdimacs+nqgdimacs)
rareqs, depgbf, QuBE, sKizzo, CirQit (qpro too)

ASP
(Iparse, gringo) x (gnt2, cmodels, claspd)

Reduction Finder

2Preliminary runs with lingeling, treengeling, plingeling, PMSat, . ..
3No simplification — https://github.com/niklasso/minisat/issues/3


https://github.com/niklasso/minisat/issues/3

Reduction Finding Results

# Unsolved cases of 48 x 48 = 2304: CEGAR vs QBF vs claspD

(¢,n) (1,3) | (2,3) | (3,3) || (1,4) | (2,4) | (3,4)
DE-GMS 0 0 10 0 5 103
DE-CUDD 0 116 537 0 186 722
RAREQS 0 0 16 19 65 204
DEPQBF 0 142 547 16 297 711
QUBE 10 536 949 82 760 | 1082
CIRQIT 58 673 1138 511 1092 | 1357
CIRQIT’ 157 523 903 - - —
SKIZZO 522 | 1058 | 1156 975 | 1327 | 1434
GRINGO 40 393 590 72 593 836
LPARSE 51 396 605 75 635 850
RedFind 1 152 396 2 347 547




CEGAR Results

REACH to REACH, k =1, scaling n withc = 1,2
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QBF Gallery 2013 (Lonsing, Seidl, van Gelder)

14 QBF solvers on random sampleof k =1,c =3, n = 4.

# of instances (of 150) solved in 900s.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/


http://www.kr.tuwien.ac.at/events/qbfgallery2013/

Outlook

What can we do?
@ Simple evaluation and reduction finding
@ http://www-erato.ist.hokudai.ac.jp/~skip/de
@ http://toss.sf.net/reduct.html
@ Useful as a debugger!

@ Source of uniform instances. parameters — hardness

What is hard?
@ high-dimensional reductions
@ symmetry breaking in example finding problems

@ using GPUs, massively parallel machines


http://www-erato.ist.hokudai.ac.jp/~skip/de
http://toss.sf.net/reduct.html

Related Future Work

Finding Fast Programs

@ Learn LFP equivalents to SO
e Examples: parity games, graph isomorphism, SAT
@ LFPTest.native

Solving Games

@ Does Player 1 win?
@ http://toss.sf.net/gameGen.html
@ Note: CEGAR loses to other solvers!

Learning Games

@ Given set of example plays, learn rules
e Examples: Connect4, gomoku, chess

e J. K. Learning Programs as Logical Queries, LTC 2013.
Much More!


http://toss.sf.net/gameGen.html

Reason to Hope

Ranges
Start with size-2 examples, then move to 3. ..
Very big performance gain. Not enough for k = 3.

Encodings & More
QBEF/SAT 2013 were inspiring — much to do!

Parallel & supercomputing
Cube and conquer? (march, treengeling, . ..)

Benchmarks
New QBF benchmarks, new QBF formats, ASP/etc.
benchmarks in progress

New Ideas and Approaches?
We're new!



Thank you!
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