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High-temperature–pressure experiments were carried out to deter-

mine the chlorine–hydroxyl exchange partition coefficient between

hornblende and melt in the 1992 Unzen dacite. Cl in hornblende

and melt was analyzed by electron microprobe, whereas OH in

hornblende and melt was calculated assuming anion stoichiometry of

hornblende and utilizing the dissociation reaction constant for H2O

þ O ¼ 2(OH) in water-saturated melt, respectively. The partition

coefficient strongly depends on the Mg/(Mg þ Fe) ratio of horn-

blende, and is expressed as ln K1 ¼ (Cl/OH)hb/(Cl/OH)melt ¼
2�37 – 4�6[Mg/(Mg þ Fe)]hb at 2–3 kbar and 800–850�C.
The twofold variation in Cl content in the oscillatory zoned cores

of hornblende phenocrysts in the 1991–1995 dacite cannot be

explained by the dependence of the Cl/OH partition coefficient on

the Mg/(Mg þ Fe)hb ratio, and requires c. 80% variation of the

Cl/OH ratio of the coexisting melt. Available experimental data at

200MPa on Cl/OH fractionation between fluid and melt suggest

that c. 1�2–1�8 wt % degassing of water from the magma can

explain the required 80% variation in the Cl/OH ratio of the melt.

The negative correlation between Al content and Mg/(Mg þ Fe)

ratio in the oscillatory zoned cores of the hornblende phenocrysts is

consistent with repeated influx and convective degassing of the fluid

phase in the magma chamber.

KEY WORDS: chlorine; element partitioning; hornblende; oscillatory

zoning; Unzen volcano

INTRODUCTION

Compositional zoning in phenocryst minerals in volcanic
rocks may record various magmatic processes. Oscilla-
tory zoning has been interpreted as a consequence of
kinetically controlled oscillation in crystal growth (e.g.
Haase et al., 1980), repeated replenishment of the magma
chamber (e.g. Davidson & Tepley, 1997), intermittent
turbulent mixing of the chamber by tidal oscillation
(Anderson, 1984), and boundary layer convection and
mixing (Nakada et al., 1994). Patchy zoning (sieve texture)
is another story and may be formed by rapid cool-
ing (Kawamoto, 1992), rapid decompression (Nelson &
Montana, 1992), or dissolution of crystals at hyperliquidus
conditions (Nakamura & Shimakita, 1998). Minor ele-
ment behaviour often helps to resolve the processes
of compositional variation in minerals (e.g. Blundy &
Shimizu, 1991), although there are possible effects of
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diffusion in modifying trace element zoning in minerals,
as recently demonstrated for Mg in plagioclase (Costa
et al., 2003). During the course of petrographic examina-
tion of the 1991–1995 dacite of Unzen volcano, Japan,
we observed oscillatory, patchy and reverse zoning in
the hornblende phenocrysts in back-scattered electron
images, which reflects the variation of Mg/(Mg þ Fe)
ratio in the hornblende. We further identified correla-
tions among Cl, Al, Mg and Fe in the oscillatory zoned
cores of the hornblende phenocrysts. The chlorine con-
tent of the oscillatory zoned cores of the hornblende
phenocrysts in the Unzen dacite varies from 0�035 to
0�075 wt %.
Chlorine is strongly partitioned into any fluid phase

separating from magmas (Shinohara, 1994), and, if the
distribution coefficients between minerals and melt are
known, can be utilized to reveal the degassing history of
magmas through the analysis of chlorine zoning in
Cl-bearing minerals. Icenhower & London (1997) experi-
mentally determined the distribution coefficient of Cl
and F between biotite and silicic melt at 800�C and
200MPa, and showed their strong dependence on the
Mg/(Mg þ Fe) ratio of biotite. The strong effect of
Mg/(Mg þ Fe) ratio of biotite and hornblende on the
distribution of Cl and F has been predicted from crystal-
chemical considerations (Volfinger et al., 1985; Oberti
et al., 1993); that is, the large anionic size of chlorine
(181 pm; Shannon & Prewitt, 1969) is readily accommo-
dated in the crystal lattice of Fe-rich biotite and
amphibole.
In this study, we describe the compositional zoning

of hornblende in the 1991–1995 Unzen dacite. Then, we
present experimental results for partitioning of Cl–OH
between hornblende and melt in dacitic systems. Based
on the experimental results, we evaluate quantitatively
the processes responsible for the Cl zoning observed in
hornblende phenocrysts in the 1991–1995 Unzen dacite.

PETROGRAPHY AND PHASE

CHEMISTRY OF HORNBLENDE IN

UNZEN DACITE

Host rocks

The 1991–1995 eruption of Unzen volcano was mostly
effusive with extrusion of viscous magmas accompanied
by numerous collapse-type pyroclastic flows. Only two
vulcanian explosions were recorded in the early stages of
the activity (Nakada et al., 1999). Most of the samples are
poorly vesiculated with porosity of 10–20 vol. %; how-
ever, bread-crust bombs and blocks from the vulcanian
explosions of 8 and 11 June 1991 exhibit variable vesicu-
larity, ranging from 0 to 70 vol. %. The eruption pro-
ducts are entirely dacitic in bulk-rock composition. SiO2

contents vary from 64�5 to 66 wt %, and total phenocryst
contents vary from 20 to 30 vol. % (Nakada &Motomura,
1999). Phenocryst phases include plagioclase, hornblende,
biotite, quartz, apatite, magnetite, ilmenite, and trace
amounts of augite and orthopyroxene. Groundmass con-
stituents are pargasite, plagioclase, magnetite, ilmenite,
apatite, orthopyroxene, augite and glass. Later eruption
products in 1994–1995 contained silica minerals in the
groundmass. The glass content of the groundmass varies
from 50 to 80 vol. %. Phenocryst minerals often show
compositional zoning; that is, oscillatory, spike (isolated
zone in otherwise uniform core) and patchy zoning in the
core, dusty and reverse zoning at the rim of plagioclase
and hornblende phenocrysts, and reverse zoning (increase
in Ti toward the rim) in magnetite (Nakamura, 1995;
Nakada & Motomura, 1999). The reverse zoning at
the rims of the phenocrysts of plagioclase, hornblende,
and magnetite has been interpreted as evidence of
magma mixing, which took place just before the erup-
tion (Nakamura, 1995; Nakada & Motomura, 1999;
Venezky & Rutherford, 1999; Holtz et al., 2005).

Hornblende zoning

Hornblende phenocrysts range from 0�3 to 5mm in
length and 0�1 to 1mm in width. They usually show
idiomorphic crystal forms. In some cases, the hornblende
phenocrysts are surrounded by a thin breakdown corona
(width <20mm in most cases) composed of plagioclase,
pyroxenes, iron–titanium oxides, and glass. Hornblende
phenocrysts contain inclusions of plagioclase, biotite,
magnetite, ilmenite, pyrrhotite, apatite, zircon and glass.
Compositional zoning of the hornblende phenocryst can
be classified into oscillatory, spike or patchy zoning in
the core, and reverse zoning at the rim. The boundary
between the core and rim of the hornblende phenocrysts
is generally sharp, but often showing irregular corroded
features. The groundmass pargasite is 5–50 mm across
and crystals are often skeletal and/or rounded (Sato
et al., 1999).
Figure 1 shows back-scattered electron images of

hornblende phenocrysts in the 1991–1995 Unzen dacite.
In the images, bright zones represent iron-rich composi-
tions, and dark zones correspond to magnesium-rich
areas. Out of 50 images of hornblende phenocrysts,
20% have reversely zoned Mg-rich rims (Fig. 1c and d),
and 80% are without rims (Fig. 1a and b). The thickness
of the rim is 5–30mm, averaging c. 10mm. In these zoned
outer rims (Fig. 1d), the zoning is of normal character.
Oscillatory zoning in the core of hornblende phenocrysts
varies from 5 to 100mm in width, mostly between 20 and
50 mm. The zones usually show inner Fe-rich (FeO 14�0–
14�5%; MgO 12�6–14�0%) and outer Mg-rich parts (FeO
13�0–14�0%; MgO 14�0–14�8%). These parts show
gradation as illustrated in the back-scattered electron
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images. The Fe-rich part often truncates the Mg-rich part
of the inner zone (Fig. 1a and b). These textures are
similar to the oscillatory zoning of plagioclase pheno-
crysts in the 1991–1995 Unzen dacite. In plagioclase
phenocrysts, each zone shows a gradual decrease of
Ca/(Ca þ Na) ratio toward the outer part, which is
often truncated by a new zone with high Ca/(Ca þ Na)
ratio. The correspondence of An-rich zones in plagioclase
and iron-rich zones in hornblende cannot be explained
by simple magmatic differentiation processes but suggests
some other process, such as magma replenishment, for the
formation of oscillatory zoning of the phenocrysts; this
will be discussed subsequently.
Figure 2 shows examples of line analytical profiles

across hornblende phenocrysts. In the line profiles, Mg
is positively correlated with Si, and inversely correlated
with Fe, Al, Na and Cl in the core of the phenocrysts
(Fig. 2). This contrasts with the core–rim compositional
change, where Mg is positively correlated with Al, Ti, Na
and K, and negatively correlated with Si, Fe and Cl (left
side of Fig. 2b). Major element correlations similar to

those observed in the core of oscillatory zoned horn-
blende phenocrysts in the Unzen dacite have been pre-
viously described from hornblende phenocrysts in the
Fish Canyon Tuff by Bachmann & Dungan (2002).
Table 1 shows representative analyses of hornblende

phenocrysts in the 1991–1995 Unzen dacite. The analy-
tical conditions for the electron microprobe analyses are
described in the legend to Table 1. Figure 3 shows com-
positional variations of Al vs Mg/(Mgþ Fe) ratio. Within
the oscillatory zoned cores of the amphiboles, Al is nega-
tively correlated with Mg/(Mg þ Fe) ratio (open symbols
in Fig. 3). The amphibole rims have higher Al contents
and Mg/(Mg þ Fe) ratios when compared with the cores
(Fig. 2b). The groundmass amphibole is pargasite (after
Leake et al., 1997) and has the same composition as the
rims of the hornblende phenocrysts. Other oxides, such
as Na, Ti and K, also show a positive correlation with
Mg/(Mg þ Fe) ratio for the core to rim relation, and
a negative correlation with Mg/(Mg þ Fe) ratio for the
core oscillatory zoning. These observations suggest that
different processes are required to explain the origin of

(a) (b)

(c) (d)

Fig.2A

Fig. 1. Back-scattered electron images of hornblende phenocrysts in the 1991–1995 Unzen dacite. Scale bars represent 100mm. (a) Bright zones
are rich in Fe, and overgrow corroded, Mg-rich, dark zones. Sample 95101703-hb-3. (b) Oscillatory zoning often showing gradual transition from
bright to dark zone and abrupt overgrowth of bright Fe-rich zone. Arrow shows the position of line scan shown in Fig. 2a. Sample 91K524E-hb-5.
(c) Dark pargasitic rim of 20mm thickness on Fe-rich oscillatory zoned core of hornblende phenocryst. Arrow shows the position of line scan of
Fig. 2b. Sample 91K524E-hb-3. (d) Fe-rich ‘spike’ zone in otherwise fairly uniform core. The dark outer rim is corroded and encloses the crystal
core. Sample 95101703A-hb-9.
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the compositional variations (1) within the cores and
(2) between cores and rims of amphiboles. Figures 4 and 5
illustrate the chlorine content of hornblende phenocrysts.
Figure 4 shows a positive correlation between Al2O3 and

Cl for the oscillatory zoned cores of the hornblende
phenocrysts (varying from c. 0�035 to 0�075 wt % Cl),
whereas the Cl content of the rims is markedly lower
(0�01–0�02 wt % Cl). Figure 5 demonstrates a negative
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correlation between chlorine and Mg/(Mgþ Fe) ratio for
the cores and rims of hornblende but it can be observed
that different compositional trends are observed for the
cores and the rims. As noted previously, Cl is more read-
ily accommodated by Fe-rich hornblende from a crystal-
chemical viewpoint. However, we need a quantification
of the compositional effects on the partition coefficient of
Cl/OH between hornblende and melt to evaluate the
origin of Cl zoning in hornblende phenocrysts.

EXPERIMENTAL STUDY

Experimental methods

Most of the high-pressure and -temperature partitioning
experiments were carried out using externally heated
pressure vessels at the University of Hannover. The
experimental conditions were 200–300MPa and 800–
850�C. The oxygen fugacities of most of the charges
were controlled at NNO (nickel–nickel oxide) buffer con-
ditions by inserting Ni þ NiO powder in a bomb consist-
ing of a nickel alloy. The starting materials were glasses
prepared by melting at c. 1600�C in air for 5 h of either

the bulk dacite or groundmass separates of the 1992 lava
from Unzen. At this temperature, the Fe3þ/(total Fe)
ratio is calculated to be 0�51–0�52 using the equation of
Kilinc et al. (1983), which may have minimal effect on the
redox state of the charge during the experiments. Some
of the runs were carried out with FeO-doped starting
materials. The compositions of the starting materials are
shown in Table 2. The glass powder was inserted in Au or
AgPd capsules together with NaCl or HCl aqueous solu-
tion. The concentration of NaCl or HCl in aqueous
solution ranges from 2�5 to 11�2, mostly 4 wt %, and
the amount of NaCl and HCl aqueous solution added to
the charge ranges from 3�6 to 10�5 wt % (Table 3). The
pressure was maintained at the nominal value monitored
by a transducer, calibrated against a Heise gauge, and
its uncertainty was within 5MPa. The temperature was
regulated by an automatic controller and is accurate to
within 10 degrees. Experimental run duration was mostly
7 or 8 days (Table 3). The samples were quenched by
cooling the bomb in air with c. 500�C drop of tempera-
ture within a minute. The run products were checked
for possible volatile leakage both by weighing the capsule
and by ensuring the presence of a vapor phase through
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Fig. 4. Cl wt % vs Al2O3 wt % in hornblende phenocrysts and groundmass hornblende in the 1991–1994 Unzen dacite.
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identifying the vapor leak during opening of the capsule
after the run. The run products were mounted in epoxy
resin and polished thin sections were prepared for optical
and electron microprobe analyses.
The run conditions are listed in Table 3. Temperatures

of the runs were either 800 or 850�C, and pressures were

185, 200 or 300MPa. Table 4 lists the compositions of
hornblende and glass in the run products, together with
the standard error of the analyses. Most of the glass
analyses gave totals of 92–95 wt %, which is consistent
with the totals of H2O-rich glass quenched from vapor-
saturated conditions in the experimental runs. The SiO2

content of the glass is in the range 69–76 wt % (anhy-
drous basis), and is similar to the estimated composition
of the low-temperature Unzen end-member magma
(prior to mixing) from which the hornblende phenocryst
crystallized (Holtz et al., 2005). Hornblende in the charge
is, in a strict sense, classified mostly as edenite (after Leake
et al., 1997); i.e. Mg/(Mgþ Fe) ratio is 0�47–0�71, NaþK
p.f.u. is 0�38–0�72, Si p.f.u. is 6�92–7�37, and Al p.f.u. is
1�43–2�43.

Results

From the compositions of hornblende and glass (i.e. melt),
we calculated the exchange partition coefficient of Cl and
OH between hornblende and melt; i.e. K1 ¼ (Cl/OH)hb/
(Cl/OH)melt. We used the water solubility model of
Zhang (1999) to calculate the total water content in the
melt. We neglected the presence of Cl in the vapor phase
in calculating the water content of the melts, because the
NaCl or HCl content of the aqueous solution added to
the charge was fairly low (mostly 4 wt %). In calculating
the OH content of the melt, the equilibrium constant for
the dissociation reaction of water [H2OþO¼ 2(OH)] in

0
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Fig. 5. Cl wt % vs Mg/(Mg þ Fe) in hornblende phenocrysts and groundmass hornblende in the 1991–1995 Unzen dacite. Calculated
compositional trends assuming constant Cl/OH ratios in the melt are shown as dashed curves (see text for details).

Table 2: Composition of starting materials for the element

partition experiments

UZBulk* Fe-doped Uzgm* Fe-doped

UZBulky Uzgmy

SiO2 65.31 63.32 68.24 66.44

TiO2 0.66 0.58 0.53 0.47

Al2O3 16.01 15.05 14.95 13.94

FeO 4.40 6.74 4.05 6.28

MnO 0.10 0.10 0.09 0.08

MgO 2.37 2.21 1.91 1.74

CaO 5.00 4.93 3.86 3.82

Na2O 3.58 3.33 3.48 3.01

K2O 2.40 2.41 2.85 3.00

P2O5 0.16 0.27 0.14 0.17

Total 99.99 98.93 100.00 98.94

*XRF analyses.
yElectron microprobe analyses.

345

SATO et al. PETROGRAPHY OF UNZEN DACITE, PART II



rhyolitic melts is adopted from Nowak & Behrens (2001),
expressed as Kwd ¼ 27�9 exp(�4210/T ), which was
obtained by in situ high-temperature IR spectrometry.
We supposed a stoichiometric concentration of anions in
hornblende (two for O ¼ 23) to calculate the amount
of OH in hornblende, and anions other than chlorine
were neglected. Fluorine was analyzed in some of the
hornblende in the run products, but was found to be
mostly in the range of 0–0�1 wt % with large relative
errors, and may therefore be neglected in calculating the
Cl/OH partition coefficient. The results of calculation of
the partition coefficient are shown in Table 5. The parti-
tion coefficient K1 varies from 0�32 to 1�53, and shows a

dependence on the Mg/(Mg þ Fe) ratio of hornblende
(Fig. 6). As noted previously, the partition coefficient may
depend on the Mg/(Mg þ Fe) ratio of hornblende based
on crystal-chemical arguments (Oberti et al., 1993). The
least-squares regression line for ln K1 as a function of
Mg/(Mgþ Fe)hb is: ln K1¼ 2�37� 4�6[Mg/(Mgþ Fe)]hb
(R ¼ 0�82). Compared with OH, Cl preferentially enters
into hornblende with more iron-rich compositions [Mg/
(Mg þ Fe) < 0�5]. Other compositional parameters such
as Al(IV), or Mg/(Mg þ Fe) � Al(IV) as suggested by
Sato et al. (1997), do not show good correlations with K1,
and addition of these parameters to the regression does
not improve the correlation coefficient. K1 does not

Table 3: Run conditions and phase assemblages of the experimental charges

No. Capsule Sample Cl in fluid NaCl or

HCl

(wt %)

Aqueous

solution

(wt %)

T (�C) P (MPa) Duration

(days)

fO2 Phases in

run products

278 Ag70Pd30 UZ Bulk Glass NaCl 4 7.40 850 300 7 NNO hb, mt, pl, gl

283 Ag70Pd30 UZ Bulk Glass NaCl 4 7.10 850 300 7 NNO hb, mt, pl, gl

286 Ag70Pd30 UZ Bulk Glass NaCl 4 7.30 850 300 7 NNO hb, mt, cpx, pl, gl

290 Au UZ Bulk Glass NaCl 4 5.20 850 300 7 NNO hb, mt, pl, gl

291 Au UZ Bulk Glass NaCl 4 4.60 850 200 7 NNO hb, mt, pl, gl

298 Au Fe-doped UZ Bulk Glass NaCl 4 3.60 800 300 7 NNO hb, mt, opx, pl, gl

299 Au Fe-doped UZ Bulk Glass NaCl 4 4.10 850 200 7 NNO hb, mt, opx, pl, gl

300 Au Fe-doped UZ Bulk Glass NaCl 4 4.85 850 300 7 NNO hb, mt, pl, gl

307 Ag70Pd30 UZ Bulk Glass NaCl 4 5.99 850 200 7 NNO hb, mt, opx, pl, gl

309 Ag70Pd30 UZ Bulk Glass NaCl 4 6.79 850 200 7 NNO hb, mt, pl, gl

313 Ag70Pd30 Fe-doped UZ Bulk Glass NaCl 4 6.88 850 300 7 NNO hb, mt, pl, gl

314 Ag70Pd30 UZ Bulk Glass NaCl 4 5.81 850 185 1 NNO þ 4 hb, mt, gl

315 Ag70Pd30 UZ Bulk Glass NaCl 4 4.55 850 185 1 NNO þ 4 hb, mt, pl, gl

316 Ag70Pd30 Fe-doped UZ Bulk Glass NaCl 4 6.49 850 185 1 NNO þ 4 hb, mt, gl

320 Ag70Pd30 Fe-doped UZ Bulk Glass NaCl 4 4.40 800 300 7 NNO hb, mt, opx, pl, gl

322 Ag70Pd30 UZ GM Glass NaCl 4 4.57 850 200 7 NNO hb, opx, mt, pl, gl

323 Ag70Pd30 UZ GM Glass NaCl 4 4.87 800 300 7 NNO hb, opx, mt, pl, gl

324 Ag70Pd30 UZ GM Glass NaCl 4 6.26 850 300 7 NNO hb, mt, pl, gl

325 Ag70Pd30 UZ GM Glass NaCl 4 3.75 800 200 7 NNO hb, opx, pl, gl

326 Ag70Pd30 Fe-doped UZGM glass NaCl 4 4.52 800 300 7 NNO hb, mt, gl

329 Ag70Pd30 Fe-doped UZGM glass NaCl 4 6.02 850 300 7 NNO hb, mt, opx, gl

330 Ag70Pd30 UZ Bulk Glass NaCl 4 4.61 850 200 7 NNO hb, mt, opx, pl, gl

331 Ag50Pd50 UZ Bulk Glass NaCl 4 4.43 800 300 7 NNO hb, mt, opx, pl, gl

333 Ag70Pd30 Fe-doped UZBulk Glass NaCl 4 5.15 850 200 7 NNO hb, mt, opx, pl, gl

B51 Au UZ GM Glass HCl 2.8 9.83 850 200 5 NNO hb, mt, opx, pl, gl

B52 Au UZ GM Glass HCl 5.6 10.02 850 200 5 NNO hb, mt, opx, pl, gl

B53 Au UZ GM Glass HCl 11.2 10.30 850 200 5 NNO hb, mt, opx, pl, gl

B57 Au UZ GM Glass HCl 2.8 10.05 850 300 5 NNO hb, mt, gl

B58 Au UZ GM Glass HCl 5.6 10.15 850 300 5 NNO hb, mt, gl

B59 Au UZ GM Glass HCl 11.2 10.46 850 300 5 NNO hb, mt, gl

Runs 314, 315 and 316 were processed by internally heated pressure vessel at Kobe University; other runs were carried out
by cold seal pressure vessel at the University of Hannover.
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Table 4: Phase compositions of the experimental run products

No. phase/n SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl Total

278 hb/10 45.20 2.24 10.84 13.86 0.22 12.90 11.14 1.80 0.61 0.021 98.83

0.25 0.10 0.21 0.22 0.02 0.18 0.15 0.06 0.03 0.004 0.45

gl/5 65.91 0.33 15.49 1.81 0.07 0.23 3.34 2.69 2.35 0.070 92.28

0.61 0.02 0.42 0.08 0.02 0.04 0.30 0.19 0.04 0.008 0.45

283 hb/10 45.48 1.74 10.56 12.58 0.22 13.54 11.06 1.72 0.53 0.034 97.48

0.75 0.25 0.51 0.52 0.03 0.35 0.18 0.07 0.04 0.003 1.02

gl/6 65.61 0.36 15.33 2.69 0.09 0.59 3.55 3.09 2.67 0.124 94.09

0.36 0.02 0.06 0.06 0.01 0.03 0.02 0.12 0.02 0.005 0.43

286 hb/11 47.85 1.10 8.26 14.07 0.46 13.99 11.07 1.34 0.53 0.053 98.72

1.01 0.19 0.92 0.44 0.07 0.40 0.08 0.20 0.05 0.009 0.46

gl/5 66.50 0.32 14.97 2.59 0.06 0.59 3.11 3.13 2.76 0.192 94.22

0.21 0.02 0.10 0.14 0.02 0.05 0.05 0.14 0.02 0.008 0.36

290 hb/14 45.96 2.31 10.43 13.82 0.23 13.17 10.33 1.75 0.55 0.053 98.60

0.63 0.23 0.30 0.58 0.03 0.51 0.18 0.10 0.04 0.005 0.69

gl/5 67.19 0.27 14.19 2.20 0.09 0.38 3.08 2.85 2.83 0.184 93.24

1.14 0.02 0.21 0.04 0.01 0.04 0.62 0.19 0.12 0.012 1.06

291 hb/13 46.41 2.32 9.60 13.94 0.23 11.97 10.57 1.75 0.52 0.066 97.37

0.67 0.60 0.60 1.05 0.02 0.91 0.22 0.16 0.04 0.008 1.47

gl/7 69.86 0.23 13.41 1.94 0.07 0.32 2.19 2.63 3.26 0.164 94.08

0.18 0.02 0.08 0.08 0.01 0.02 0.06 0.17 0.10 0.007 0.41

298 hb/10 47.44 1.48 7.93 20.97 0.29 10.67 8.78 1.34 0.52 0.119 99.55

0.91 0.13 0.84 1.16 0.06 0.41 0.58 0.13 0.14 0.014 0.73

gl/5 72.74 0.15 12.39 1.75 0.04 0.19 1.72 2.63 3.99 0.180 95.78

0.28 0.02 0.15 0.07 0.02 0.04 0.11 0.05 0.09 0.025 0.21

299 hb/1 45.68 1.80 9.31 17.54 0.25 12.18 9.65 2.02 0.54 0.066 99.02

gl/7 70.42 0.24 13.19 2.36 0.04 0.31 2.17 2.83 3.35 0.190 95.10

0.40 0.02 0.11 0.11 0.01 0.03 0.03 0.20 0.18 0.018 0.79

300A hb/5 44.08 1.98 9.96 20.35 0.14 10.76 9.52 1.76 0.47 0.084 99.12

0.28 0.13 0.17 0.59 0.03 0.38 0.22 0.01 0.07 0.012 1.08

gl/5 66.63 0.18 13.49 1.69 0.03 0.26 2.42 3.05 2.79 0.166 90.71

0.32 0.02 0.09 0.07 0.02 0.01 0.06 0.13 0.02 0.002 0.43

307 hb/5 45.34 2.30 9.34 15.09 0.15 13.04 10.60 1.77 0.50 0.056 98.18

0.77 0.17 0.22 0.47 0.08 0.43 0.26 0.02 0.04 0.003 0.48

gl/4 65.16 0.33 13.44 1.68 0.04 0.40 2.93 2.91 2.95 0.171 90.01

0.43 0.01 0.37 0.04 0.02 0.02 0.14 0.15 0.05 0.001 1.08

309 hb/5 45.53 2.22 9.12 14.93 0.14 13.97 10.25 1.70 0.45 0.043 98.36

0.23 0.03 0.21 0.37 0.04 0.16 0.14 0.06 0.02 0.003 0.26

gl/5 65.13 0.32 13.35 1.85 0.07 0.50 2.61 3.03 2.85 0.191 89.91

0.53 0.02 0.19 0.13 0.02 0.11 0.19 0.19 0.12 0.007 0.93

313 hb/5 43.97 1.86 10.20 19.62 0.14 11.36 9.64 1.83 0.45 0.052 99.14

0.47 0.07 0.41 0.82 0.03 0.24 0.17 0.05 0.03 0.001 0.96

gl/5 65.11 0.19 13.73 1.95 0.03 0.33 2.71 3.10 2.60 0.186 89.94

0.39 0.03 0.16 0.16 0.03 0.06 0.04 0.07 0.08 0.007 0.37

314 hb/10 44.10 1.40 12.26 11.14 0.25 13.50 11.74 1.69 0.58 0.051 96.71

0.92 0.20 0.44 1.24 0.04 0.82 0.22 0.13 0.06 0.008 0.61

gl/6 66.55 0.31 15.19 1.62 0.06 0.56 3.76 3.54 2.79 0.155 94.54

0.50 0.06 0.15 0.22 0.03 0.02 0.07 0.26 0.04 0.005 0.35
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Table 4: continued

No. phase/n SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl Total

315 hb/7 44.69 1.91 12.97 10.46 0.22 12.77 11.27 1.88 0.71 0.055 96.93

1.20 0.18 0.38 0.35 0.03 0.69 0.41 0.09 0.09 0.007 0.53

gl/6 70.01 0.34 13.33 1.42 0.08 0.52 2.38 3.18 3.35 0.150 94.76

1.23 0.02 0.91 0.18 0.02 0.06 0.39 0.27 0.07 0.011 0.72

316 hb/5 43.70 1.31 12.25 12.99 0.28 12.95 11.91 1.57 0.56 0.040 97.55

0.42 0.15 0.30 1.70 0.08 0.90 0.13 0.08 0.03 0.005 0.37

gl/6 66.19 0.29 15.23 1.49 0.05 0.58 3.86 3.63 2.68 0.157 94.15

0.44 0.02 0.06 0.05 0.03 0.05 0.05 0.36 0.05 0.003 0.72

320 hb/8 45.16 2.04 9.26 19.52 0.22 9.83 9.71 1.54 0.63 0.087 98.00

0.32 0.21 0.37 0.94 0.04 0.34 0.52 0.11 0.09 0.012 0.26

gl/4 70.07 0.14 13.09 2.02 0.06 0.26 1.88 2.60 3.54 0.156 93.82

0.73 0.02 0.40 0.13 0.04 0.03 0.09 0.18 0.09 0.009 0.37

322 hb/4 45.95 2.26 9.57 14.68 0.20 11.91 11.53 1.68 0.53 0.031 98.34

0.84 0.33 1.22 0.26 0.05 0.44 1.06 0.21 0.06 0.003 0.75

gl/3 68.92 0.29 13.82 2.33 0.06 0.43 2.61 2.72 3.24 0.124 94.54

0.21 0.01 0.36 0.04 0.02 0.02 0.14 0.11 0.08 0.004 0.59

323 hb/3 46.14 1.63 9.63 17.57 0.31 10.94 9.86 1.57 0.55 0.062 98.26

0.62 0.13 0.54 0.89 0.03 0.61 0.30 0.08 0.04 0.005 0.54

gl/3 68.48 0.29 13.21 2.38 0.08 0.45 2.33 2.52 3.30 0.131 93.18

0.84 0.09 0.02 0.33 0.01 0.15 0.27 0.15 0.09 0.008 0.36

324 hb/8 44.82 2.16 10.46 15.26 0.21 11.78 10.88 1.75 0.65 0.047 98.03

0.45 0.22 0.48 0.62 0.02 0.83 0.15 0.08 0.07 0.004 0.59

gl/3 65.99 0.30 14.62 2.91 0.08 0.53 3.21 2.75 2.82 0.153 93.36

0.10 0.01 0.05 0.14 0.03 0.06 0.07 0.09 0.06 0.003 0.24

325 hb/2 46.73 1.57 9.22 16.86 0.21 10.11 10.28 1.60 0.54 0.067 97.19

1.03 0.20 0.69 0.64 0.00 0.65 0.12 0.06 0.00 0.003 0.41

gl/3 71.50 0.16 12.43 1.64 0.03 0.20 1.71 2.38 3.61 0.112 93.76

0.63 0.01 0.00 0.06 0.02 0.01 0.09 0.01 0.15 0.004 0.81

326 hb/8 46.38 1.10 9.27 15.02 0.23 12.56 11.16 1.36 0.54 0.014 97.62

0.81 0.13 0.40 1.40 0.02 0.80 0.38 0.07 0.05 0.004 0.36

gl/3 67.82 0.14 13.91 2.16 0.07 0.37 2.85 2.59 2.80 0.039 92.75

0.21 0.00 0.15 0.04 0.02 0.01 0.12 0.19 0.04 0.005 0.14

329 hb/1 45.60 1.46 8.66 16.93 0.21 12.46 10.90 1.41 0.44 0.036 98.09

gl/5 67.37 0.21 14.18 3.15 0.06 0.51 3.15 2.79 2.90 0.140 94.46

0.40 0.02 0.17 0.09 0.02 0.02 0.12 0.10 0.04 0.007 0.65

330 hb/2 46.80 2.11 10.36 12.50 0.20 12.32 10.94 1.81 0.57 0.048 97.67

0.56 0.08 1.72 1.00 0.06 1.08 0.27 0.22 0.06 0.001 0.07

gl/2 67.32 0.28 14.33 2.27 0.03 0.40 2.93 2.86 2.99 0.137 93.55

0.59 0.00 0.84 0.19 0.03 0.01 0.54 0.26 0.19 0.008 0.69

331 hb/4 47.91 1.41 9.59 15.52 0.31 12.12 9.70 1.49 0.49 0.055 98.57

0.20 0.14 0.78 0.04 0.04 0.49 0.26 0.11 0.03 0.001 0.57

gl/6 71.09 0.16 12.76 1.46 0.04 0.20 1.82 2.41 3.33 0.134 93.40

0.43 0.01 0.14 0.04 0.02 0.01 0.10 0.09 0.09 0.003 0.40

333 hb/3 44.73 1.49 10.40 16.91 0.16 11.92 10.08 1.70 0.55 0.037 97.97

0.61 0.13 0.60 0.20 0.01 0.43 0.11 0.14 0.02 0.006 0.84

gl/10 68.70 0.32 13.99 2.80 0.08 0.48 2.79 3.07 3.13 0.122 95.49

0.39 0.02 0.08 0.11 0.02 0.03 0.08 0.09 0.11 0.005 0.53
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depend on pressure. The temperature effect on ln K1 is
negative, and the following regression is obtained: ln K1¼
8�62� 3�46[Mg/(Mgþ Fe)]hb� 0�0062T, where T is the
absolute temperature (R ¼ 0�80). Although the data
points in Fig. 6 show some scatter, mainly because of
analytical errors in determining the compositions of
phases, and possibly because of the assumption of the
stoichiometric anionic contents of hornblende, we con-
clude that the most important controlling factor on the
partition coefficient K1 is the Mg/(Mg þ Fe) ratio of
hornblende.

DISCUSSION

Interpretation of chlorine variation in
hornblende phenocrysts

In this section, we apply the newly derived partition
coefficient to interpret the variation of chlorine content
in hornblende phenocrysts in the Unzen dacite. As noted
previously, the Cl content of hornblende is negatively
correlated with the Mg/(Mg þ Fe) ratio for both the
core and rim (and groundmass) compositions. Figure 5

shows two dashed lines, which illustrate the calculated Cl
content vs Mg/(Mg þ Fe) ratio of hornblende assuming
a constant Cl/OH ratio in the melt. The compositions
of the rims (pargasite) mostly fit the lower dashed line
with a molar (Cl/OH)melt ratio of 0�0031, suggesting that
these amphiboles crystallized from a melt with a nearly
uniform molar Cl/OH ratio. On the other hand, the
compositions of the phenocryst cores define a steeper
slope than the calculated dashed line, which represents
hornblende compositions in equilibrium with a melt of
constant (Cl/OH)melt ratio of 0�0124. The variation of
the partition coefficient K1 with the Mg/(Mg þ Fe)
ratio of the hornblende (Fig. 6) can account for c. 20%
of the total variation in chlorine content of the cores of
the hornblende phenocrysts; that is, c. 80% of the
observed variations of chlorine content in the core of
the hornblende phenocrysts should be ascribed to the
variation of the Cl/OH ratio in the melt.
Cl/OH fractionation is probably caused by degassing

of magmas and fluid input. We carried out incremental
degassing calculations for melt compositions as illustrated
in Fig. 7. The exchange partition coefficient of Cl/H2O

No. phase/n SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl Total

B51 hb/10 47.73 1.77 9.31 13.34 0.38 12.60 10.72 1.35 0.51 0.072 97.78

0.95 0.18 0.37 0.46 0.06 0.64 0.51 0.12 0.08 0.008 3.37

gl/16 66.69 0.36 14.02 2.54 0.11 0.53 3.12 2.62 2.72 0.219 92.93

0.19 0.02 0.12 0.21 0.04 0.04 0.10 0.15 0.06 0.011 0.93

B52 hb/6 46.56 1.84 8.34 13.25 0.35 14.63 10.81 1.28 0.34 0.084 97.47

0.25 0.36 0.19 0.79 0.05 0.63 0.30 0.14 0.04 0.015 0.47

gl/16 66.09 0.40 14.03 2.78 0.12 0.69 3.37 2.66 2.61 0.459 93.20

0.23 0.02 0.13 0.13 0.04 0.04 0.08 0.09 0.06 0.013 0.82

B53 hb/6 46.37 1.73 8.82 13.25 0.35 14.57 10.58 1.16 0.32 0.106 97.25

0.59 0.33 0.66 1.14 0.03 0.87 0.18 0.04 0.03 0.022 0.34

gl/16 66.01 0.45 14.07 2.72 0.105 0.79 3.64 2.59 2.55 0.655 93.58

0.36 0.02 0.13 0.13 0.046 0.04 0.10 0.22 0.08 0.015 0.36

B57 hb/10 47.43 1.75 8.60 13.81 0.34 13.09 10.97 1.24 0.45 0.052 97.75

1.12 0.35 0.39 1.41 0.08 1.00 0.58 0.13 0.03 0.009 0.52

gl/15 65.23 0.39 13.92 2.59 0.093 0.65 3.25 2.28 2.63 0.233 91.27

0.33 0.03 0.14 0.16 0.048 0.04 0.10 0.39 0.08 0.006 0.39

B58 hb/6 47.10 1.35 7.83 14.07 0.42 14.22 10.88 1.14 0.32 0.079 97.40

0.55 0.38 0.58 1.33 0.07 0.86 0.20 0.13 0.05 0.014 0.35

gl/16 65.17 0.41 13.84 2.71 0.098 0.73 3.36 2.37 2.62 0.417 91.72

0.30 0.01 0.12 0.09 0.057 0.04 0.09 0.11 0.06 0.009 0.39

B59 hb/6 47.51 1.67 7.98 11.88 0.34 16.07 10.32 1.10 0.30 0.087 97.26

0.91 0.20 0.80 0.57 0.08 0.44 0.15 0.05 0.03 0.008 0.34

gl/16 65.31 0.40 13.92 2.65 0.094 0.70 3.44 2.45 2.57 0.652 92.17

0.32 0.02 0.14 0.12 0.053 0.05 0.07 0.12 0.08 0.015 0.43

n, number of analyses. Second line for each entry gives standard error of the analyses.
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between fluid and melt at 200MPa ranges from two to
five based on the data of Webster (1992), and we adopted
values of two and four for the degassing calculation.
Figure 7 shows that about 70% of the variation in the
Cl content of the hornblende requires 1�2–1�8 wt %
degassing of H2O from the magma. Thus, it is likely
that during the crystallization of the oscillatory zoned
cores of the hornblende phenocrysts, repeated degassing
and fluid recharge of the magma took place.
Another possible cause of the change in (Cl/OH) melt

ratio is the replenishment of the magma chamber by
input of Cl-poor mafic magma and subsequent mixing
of the magmas (Davidson & Tepley, 1997). This sce-
nario, however, is not in agreement with the negative
correlation between Al and Mg/(Mg þ Fe) ratio
observed in the oscillatory zoning of the hornblende
phenocrysts. Replenishment of the magma chamber by
mafic input will increase the Mg/(Mg þ Fe) ratio and
decrease the silica activity of themixedmagma, whichmay
be reflected in concomitant increases of Mg/(Mg þ Fe)
ratio and Al content of hornblende such as observed in
the reverse zoning of hornblende phenocrysts in Fig. 2b.
Al in hornblende is affected by the composition of melt
from which it crystallizes, and the following reaction
indicates the increasing Al content of hornblende as
a result of decrease of silica activity of the coexisting
melt by magma replenishment: pargasite þ 4SiO2 ¼
hornblende þ albite (e.g. Blundy & Holland, 1990).
Decrease of silica activity shifts the reaction to the left-
hand side of the equation, causing an increase in the Al
content of the hornblende. Therefore, we should expect
a positive correlation between Al and Mg/(Mg þ Fe)
ratio caused by replenishment of the magma chamber,
which is opposite to the observed correlation in the
oscillatory zoned cores of the hornblende phenocrysts.
Therefore, the variation of Cl/OH as a result of magma
replenishment is not a plausible mechanism for causing
oscillatory zoning in the cores of the hornblende
phenocrysts.

Convective degassing/fluid input in the
chamber

Several arguments support the possibility of fluid input/
degassing processes in the magma chamber to explain
variations in the Cl content of hornblende. Generation
of bubbles in a crystallizing mafic boundary layer in a
stratified magma chamber has been proposed by
Eichelberger (1980) as a mechanism for the formation
of mafic inclusions. Simakin & Botcharnikov (2001) sug-
gested that generation of bubbles in a stratified magma
chamber may cause large-scale convective motion and
mixing in the magma chamber, although Phillips &
Woods (2002) argued that bubbles may separate and
independently float up in the stratified chamber, and
do not cause strong mixing in the magma chamber.

Murphy et al. (2000) and Couch et al. (2001) suggested
the input of fluid and vesiculated mafic inclusions into
the upper layer of a stratified magma chamber at
Soufri�eere Hills Volcano, Montserrat. These models
assume the generation of fluid of magmatic origin by
crystallization-induced volatile oversaturation in a deep
high-temperaturemaficmagmawithin a stratifiedmagma
chamber (Fig. 8b).
Another possible model was advocated by Hattori

(1993) for the supply of sulfur in the silicic magma cham-
ber at Pinatubo, in which uprising basic magma is satur-
ated with a vapor phase, producing fluid pockets at the
top of the mafic magma body. This fluid phase migrates
along fractures towards the overlying silicic magma
chamber as a result of buoyancy and the local stress field
(Takada, 1994; Fig. 8a). Another possible source of the
fluid is the heated meteoric water surrounding the lower
magma chamber. The air-contaminated nature of the
rare-gas isotopic composition of hornblende phenocrysts
of the Unzen dacite (Hanyu & Kaneoka, 1997) supports a
contribution of groundwater to the volatiles in the upper
phenocryst-rich magma chamber. Input of fluid in this
magma chamber results in the resorption of phenocrysts
and a decrease in magma density triggers the convective
uprise of magma in the chamber, which may vesiculate
and degas at shallower depth. Degassing causes crystal-
lization and an increase of magma density, and the
degassed magma may descend in the chamber. Such
fluid charge–convective degassing can occur repeatedly
and oscillatory zoning of the phenocrysts may result.
Equilibrium solubility of water in the dacitic melt at a
depth of c. 11 km (c. 290MPa) is c. 6�9 wt%, and at a depth
of 8 km (210MPa) is c. 5�8 wt %. These depths are indi-
cated as pressure sources within the magma plumbing
system beneath Unzen volcano by geodetic measure-
ments (Ishihara, 1993; Nishi et al., 1999). Although we
are not fully convinced of the existence of large-scale
convective motion in the magma chamber, the model of
Kazahaya et al. (1994) that explains degassing of large
amounts of sulfur dioxide in many active volcanoes—that
is, convective degassing through the conduit and magma
chamber—reinforces the above model of convective
degassing in deep magma chambers. Degassed dense
magmas find their way down the conduit into the
magma chamber accompanied by an upwelling of low-
density volatile-rich magma, which may eventually vesi-
culate and degas in a shallower part of the conduit or
chamber (Fig. 8b).
This study has demonstrated that large variations in

chlorine content in the oscillatory zones of hornblende
phenocrysts in the 1991–1995 Unzen dacite are probably
caused by fluid input–output processes in the magma
chamber, based on the experimental determination of
Cl/OH exchange partitioning between hornblende and
melt. Although plagioclase phenocrysts in the 1991–1995
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dacite also show oscillatory, patchy, spike and reverse
zoning, we have restricted the discussion to the origin of
hornblende zoning, partly because there is rare-gas and
Sr isotopic evidence for different sources for the horn-
blende and plagioclase phenocrysts in the Unzen dacite
(Hanyu & Kaneoka, 1997; Chen et al., 1999). Another
problem for interpreting the oscillatory zoning of plagio-
clase phenocrysts is the possible role of diffusion decoup-
ling in the formation of trace element zoning in
plagioclase as suggested by Costa et al. (2003). We need
further experimental studies and analyses to resolve these
aspects of the origin of oscillatory zoning of phenocryst
minerals in volcanic rocks.
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