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Abstract. This paper develops a secure distributed Constraint Satisfac-
tion algorithm. A Distributed Constraint Satisfaction Problem (DisCSP)
is a CSP in which variables and constraints are distributed among mul-
tiple agents. A major motivation for solving a DisCSP without gather-
ing all information in one server is the concern about privacy/security.
However, existing DisCSP algorithms leak some information during the
search process and privacy/security issues are not dealt with formally.
Our newly developed algorithm utilizes a public key encryption scheme.
In this algorithm, multiple servers, which receive encrypted information
from agents, cooperatively perform a search process that is equivalent
to a standard chronological backtracking. This algorithm does not leak
any private information, i.e., neither agents nor servers can obtain any
additional information on the value assignment of variables that belong
to other agents.

1 Introduction

A Distributed Constraint Satisfaction Problem (DisCSP) is a constraint satisfac-
tion problem in which variables and constraints are distributed among multiple
agents. Since various application problems in multi-agent systems can be formal-
ized as DisCSPs, there have been many works on this topic in the last decade
[5, 7, 10, 13–15].

One major motivation for solving a DisCSP without gathering all information
in one server is the concern about privacy/security, i.e., the knowledge of the
problem each agent has is private information and revealing such information



to a server or other agents is not desirable. Consequently, we cannot gather all
information in a single server and solve the problem by using centralized CSP
techniques. In a DisCSP, a variable value can be considered as an action/plan
that an agent will take. It is natural that an agent does not want to reveal
information on possible plans or the final plan it will take to other agents.

For example, a problem of scheduling multiple meetings among multiple par-
ticipants can be formalized as a DisCSP as follows. Each agent/participant has
one variable that corresponds to each meeting. The domain of a variable is pos-
sible dates and time slots. There exist equality constraints among variables that
represent the same meeting and belong to different agents (i.e., they must meet
the same day/time). Also, there exist inequality constraints between multiple
variables that belong to the same agent (i.e., a person cannot attend multiple
meetings at the same time). Also, an agent has unary constraints on its vari-
ables (i.e., he/she has personal schedules that prevent him/her from attending a
meeting). In this problem domain, it is clear that a person would not be happy
to make such private information public.

However, existing DisCSP algorithms leak some information during the search
process and privacy/security issues have not yet been dealt with formally. For
example, in the asynchronous backtracking algorithm [14], each agent exchanges
a tentative value assignment with each other. If the current assignment does
not satisfy constraints, these agents change their assignments and perform back-
tracking in a certain order. During this search process, an agent can obtain some
information on possible values of variables that belong to other agents. Also, an
agent can learn the final value assignment of these variables.

When applying this algorithm to the meeting scheduling problem, we can
assume each agent makes proposals on the date and time slot of the meeting
and negotiates with other agents. The fact that an agent proposes a certain
date reveals that he/she does not have any personal schedule on that date. If an
agent declines a certain date, this means that he/she has a personal schedule or
the date conflicts with some other meeting. Such private information is leaked
during the search process.

On the other hand, in the research community on information security and
cryptography, there have been many works on multi-party protocols, which deal
with performing various computations based on private information of partici-
pants, while keeping the private information secret [4, 9]. However, as far as the
authors are aware, there has been virtually no work on solving combinatorial op-
timization problems (including CSPs as a special case) by utilizing information
security techniques, with the notable exception of the authors’ recent works on
secure dynamic programming [12, 16].

In this paper, we develop a secure DisCSP algorithm that utilizes information
security techniques. As far as the authors are aware, this is the first research effort
that combines the two growing research fields, i.e.. constraint satisfaction and
information security.

In this paper, we say that an algorithm does not leak any private information
if an agent cannot obtain any additional information on the value assignment of



variables that belong to other agents. In a meeting scheduling application, this
means that each participant cannot know the scheduled dates of the meetings
he/she will not attend. Also, he/she cannot obtain any information on the private
schedules of other participants.

In our newly developed secure DisCSP algorithm, multiple computational
servers are used to implement a standard chronological backtracking; thus, this
algorithm is guaranteed to be complete. Each agent only knows the value assign-
ment of its own variables and cannot obtain any additional information on the
value assignment of variables that belong to other agents. Also, computational
servers cannot get any information on the value assignment of any variables.

In the rest of this paper, we first show the formal definition of DisCSP and
secure algorithms (Section 2). Next, we describe a public key encryption scheme,
which is a basic tool used in our secure DisCSP algorithm (Section 3). Then, we
describe the details of our newly developed secure DisCSP algorithm (Section 4).
Finally, we examine the characteristics of this algorithm (Section 5) and discuss
related works (Section 6).

2 Formalization

A DisCSP can be formalized as follows.

– There exist agents 1, 2, . . . , I.
– There exist variables x1, x2, . . . , xn. Each variable belongs to one agent. The

fact that xi belongs to agent a is represented as belongs(xi, a).
– All variables have a common domain {1, 2, . . . , m}. This domain of variables

is common knowledge among agents.
– There exist unary constraints on one variable and binary constraints between

two variables.
– We assume constraints are represented as nogoods. A unary nogood (xi = di)

represents the fact that the value assignment di to variable xi violates the
constraint. A binary nogood (xi = di, xj = dj) represents the fact that the
assignment of xi = di and xj = dj violates the constraint.

– These constraints are the private information of agents. More specifically,
the unary constraints on xi, which belongs to agent a, are known only by
agent a. Let us denote a set of these unary constraints as Ca

xi
. Also, the

binary constraints between xi and xj , which belong to agent a and agent b,
respectively, are distributed between agents a and b. Let us denote the con-
straints agent a knows as Ca

xi,xj
and the constraints agent b knows as Cb

xi,xj
.

– A solution of DisCSP D = (x1 = d1, x2 = d2, . . . , xn = dn) is a value
assignment of all variables that satisfies all unary and binary constraints.

Let us show an example. Figure 1 shows an example of the well-known n-
queens problem, where n = 4. If we assume there exists an agent that corresponds
to a queen of each row and these queens try to find their positions so that they
do not kill each other, this problem can be formalized as a DisCSP. We call
this problem the distributed 4-queens problem. More specifically, there are four



agents 1, 2, 3, 4. Each agent i has one variable xi with domain {1, 2, 3, 4}. In this
problem, there is no unary constraint. Let us assume that for i < j, Ci

xi,xj
,

i.e., the constraint agent i knows, consists of diagonal constraints, e.g., C2
x2,x3

contains nogood (x2 = 1, x3 = 2), etc., and Cj
xi,xj

consists of column constraints,
e.g., C2

x1,x2
contains nogood (x1 = 1, x2 = 1), etc.

x1

x2

x3

x4

Fig. 1. Distributed 4-Queens Problem

This formalization is based on the traditional definition introduced by [13,
14]. One minor difference is that in [13, 14], it is assumed that the domain of a
variable is different and the domain is private information, while in our formal-
ization, the entire domain is common knowledge but an agent can have private
unary constraints. These two formalizations are mutually interchangeable and
there are no fundamental differences. Another slight difference is that in [13, 14],
binary constraints between variables xi and xj are assumed to be the common
knowledge of agents a and b, who own these variables. This is a special case of
our definition where Ca

xi,xj
and Cb

xi,xj
are identical.

In [10], an alternative formalization of DisCSP is presented in which variables
and domains are common knowledge and constraints are private information.
Our formalization is based on [14], i.e., the constraints an agent has are restricted
to the constraints that are related to its own variables.

We define the fact that when solving a DisCSP using a particular algorithm,
the algorithm does not leak private information of an agent to other agents as
follows.

– After a solution is found, each agent has the same knowledge on the assign-
ment of other agents as the case where the agent obtains (a part of) the
solution directly from an oracle without performing the algorithm.
More specifically, let us denote an assignment of any subset of k variables as
Dk = (xj1 = dj1 , xj2 = dj2 , . . . , xjk

= djk
). Also, let us define pa(Dk) as the

estimated probability of agent a, in that the final solution is a superset of
Dk, after a solution is found by performing the algorithm. Also, let us define
poracle

a (Dk) as the estimated probability of agent a, in that the final solution
is a superset of Dk, after obtaining the value assignment of its own variables
from the oracle. This definition means pa(Dk) = poracle

a (Dk) for all Dk.



When obtaining the value assignment of its own variables from the oracle,
the agent obtains certain information on the value assignment of other variables.
For example, assume x1 belongs to agent a and x2 belongs to agent b. If agent a
knows there exists an inequality constraint between x1 and x2, agent a can infer
that pa((xj = di)) = 0 if xi is assigned to di. Also, if there exists an equality
constraint, it can infer that pa((xj = di)) = 1. The above condition means that
the algorithm does not leak any unnecessary information, i.e., no additional
information is leaked besides the information that can be inferred by obtaining
a part of the solution.

Basically, the above definition requires that there must be no information
leak on unary constraints. It is clear that if a solution is obtained from the
oracle, an agent can obtain no information on the unary constraints of other
agents. If agent a learns some information on unary constraints, e.g., a learns
nogood (xj = dj) by performing an algorithm, pa((xj = dj)) = 0 cannot be
equal to poracle

a ((xj = dj)), except when poracle
a ((xj = dj)) = 0.

Furthermore, if an algorithm requires a third party other than the agents
who originally have variables (we call such an actor a server), we define the fact
that when solving a DisCSP using a particular algorithm, the algorithm does
not leak any private information of an agent to a server as follows. We assume
a server does not have any a priori knowledge of the problem.

– A server has no knowledge on the obtained solution after performing the
algorithm. More specifically, for an assignment of any subset of k variables
Dk = (xj1 = dj1 , xj2 = dj2 , . . . , xjk

= djk
), let us denote the estimated

probability of a server, in that the obtained solution is a superset of Dk,
as pserver(Dk). This definition means pserver(Dk) = 1/mk, where k is the
number of variables in Dk. This condition means all assignments look equally
probable for a server.

This condition requires that a server cannot learn any information on unary/binary
constraints.

3 Preliminaries

In this section, we describe a basic tool for our implementation, i.e., an indistin-
guishable, homomorphic, and randomizable public key encryption scheme. In the
rest of this paper, we use ElGamal encryption [2], which has all of these proper-
ties, for describing our algorithm. However, our algorithm can be implemented
using other encryption methods that also have these properties.

– Public key encryption: In public key encryption, the key used for encryption
is public, so anybody can create ciphertext E(M) from plaintext M . On the
other hand, the key used for decryption is kept secret and only the one who
has the secret key can obtain M from E(M).

– ElGamal encryption: ElGamal encryption is one instance of public key en-
cryption. Let q, p = 2q+1 be primes and G =< g >⊂ Z∗

p be a cyclic group of



order q generated by g, where Zp denotes a set of integers from 0 to p−1 and
Z∗

p denotes a set of integers that are in Zp and prime to p. The secret key is
s ∈ Zq and the corresponding public key is g, y = gs. ElGamal encryption is
based on the assumption of the hardness of the discrete logarithm problem
(DLP), i.e., to find s from (g, gs) is computationally infeasible. Please note
that we use modulo p arithmetic.
Anyone can encrypt message M ∈ G just by using the public key g, y = gs,
i.e., choose random number r ∈ Zq and create ElGamal ciphertext E(M) =
(A = gr, B = yrM).
One who knows the secret key, s ∈ Zq, can decrypt ciphertext E(M) = (A =
gr, B = yrM), i.e., compute B/As = M .

– Indistinguishable encryption: In ElGamal encryption, E(M) is created us-
ing random number r. Thus, if the same plaintext is encrypted twice using
different random numbers, these two ciphertexts look totally different and
we cannot know whether the original plaintexts are the same or not without
decrypting them.

– Homomorphic encryption: Encryption E is homomorphic if E(M1)E(M2) =
E(M1M2) holds. If we define the product of ciphertexts E(M1) = (A1, B1)
and E(M2) = (A2, B2) by E(M1)E(M2) = (A1A2, B1B2), ElGamal encryp-
tion E is homomorphic encryption. By using this property, we can obtain the
product of two plaintexts by taking the product of two ciphertexts without
decrypting them.

– Randomization: In ElGamal encryption, one can create a new randomized
ciphertext E(M) = (Agr′

, Byr′
) with random value r′ from the original

ciphertext E(M) = (A = gr, B = yrM). This is equivalent to making a
product of E(1) = (gr′

, yr′
) and E(M). If we assume that the Decision

Diffie-Hellman (DDH) problem is infeasible, one cannot determine whether
a ciphertext is a randomized ciphertext of the original ciphertext or not.

– Multiple Servers: By utilizing secret sharing techniques, we can make each
server to have only a share of the secret key; thus, any collusion of t (or less
than t) servers cannot decrypt E [9].
In the preparation phase, secret key s and public key y are generated in a
distributed way [8] and each distributed server has only a share of the secret
key. The decryption is performed in a distributed fashion by each distributed
server that has a share of the secret key.
For example, let us consider a simplest case where the total number of servers
is two and t = 1, i.e., there are servers 1 and 2. If these two servers cooperate,
they can decrypt E while a single server cannot. Servers 1 and 2 generate
their own shares of the secret keys s1, s2, respectively. The secret key is
s = s1 + s2, but each server does not know s. They exchange y1 = gs1 and
y2 = gs2 with each other and obtain public key y = y1 · y2 = gs1+s2 = gs.
When decrypting E(M) = (A = gr, B = yrM), these servers calculate As1

and As2 and exchange the results with each other. Then, by calculating
B/(As1 · As2 ) = B/As1+s2 = B/As, these servers can obtain plaintext M .
Note that the secret key s is kept secret to these servers even after the
decryption; they need to cooperate to decrypt another ciphertext.



4 Secure DisCSP Algorithm

In this section, we show the details of our newly developed algorithm. When de-
scribing our algorithm, we put the following assumptions for notation simplicity.

– Each agent i has exactly one variable xi.
– There exist binary constraints between all pairs of variables.

Relaxing these assumptions and extending the algorithm to general cases is
rather straightforward.

4.1 Basic Ideas

In our newly developed secure DisCSP algorithm, computational servers called a
search-controller, decryptors, and value-selectors are used. There exist multiple
(at least two) decryptors. Each of these decryptors has a share of the secret key
of E as described in Section 3, and public key y for E is generated by these
decryptors distributedly. There exists one value-selector for each variable/agent.
Also, there exists one search-controller.

The main search procedure is performed by the search-controller and value-
selectors. Each agent first encodes unary/binary constraints and passes the in-
formation to the servers. Then, these servers obtain a solution and return the
value assignment to each agent. By utilizing these servers, we can guarantee
that the information each agent can get is the same as the case where the agent
obtains its value assignment directly from an oracle.

On the other hand, when utilizing servers, we must make sure that these
servers do not obtain any information of the obtained solution. The definition
introduced in Section 2 is so strict that it requires that a server cannot learn the
fact that two variable values are different/equal.

In our secure DisCSP algorithm, this requirement is satisfied by introducing
the following methods: 1) constraints are encoded by using a public key encryp-
tion scheme, 2) agents cooperatively perform renaming/permutation of variable
values, 3) the search procedures are distributed among multiple servers, i.e., a
search-controller, decryptors, and value-selectors.

Figure 2 (a) shows the flow of the proposed algorithm. In the rest of this
section, we describe the details of these procedures.

4.2 Encoding Constraints

Each agent needs to encode its unary/binary constraints so that subsequent
renaming/permutation is possible and so that the search-controller and value-
selectors cannot understand but decryptors can cooperatively decrypt.

To satisfy this goal, for each value k of variable xi, agent i represents its
unary/binary constraints using an n × m constraint matrix. We denote this
matrix as Ai,k. The element of this matrix Ai,k(j, l) is defined as follows. E(1) and
E(z) denote the encryption of 1 and common public element z(�= 1), respectively.
z is chosen so that zc mod p �= 1 holds for all c, where 0 < c < q. We also assume
2(n − 1) < q holds.



– For j �= i:
• Ai,k(j, l) = E(z) if xi = k and xj = l are inconsistent, i.e., nogood(xi =

k, xj = l) is in Ci
xi,xj

, or k violates i’s unary constraint, i.e., nogood(xi =
k) is in Ci

xi
.

• Ai,k(j, l) = E(1) if xi = k and xj = l are consistent.
– For j = i and l �= k: Ai,k(j, l) = E(1).
– For j = i and l = k: Ai,k(j, l) = E(Ei(k)), where Ei is i’s encryption

function. Ei can be any encryption scheme, i.e., it does not need to be a
public key encryption scheme. We assume Ei(k) ∈ G and Ei(k) �= 1.

Figure 2 (b) shows a constraint matrix for value 1 of x2 encoded by agent 2 in
the distributed 4-queens problem. Note that agent 2 knows column constraints
with x1 and diagonal constraints with x3 and x4. The j-th row for j �= i rep-
resents binary constraints, i.e., the position that is in conflict with x2 = 1 is
filled by E(z) (otherwise filled by E(1)). As described in Section 3, E is indis-
tinguishable, which means that each E(z) (or E(1)) looks totally different and
we cannot know whether the original plaintexts are the same or not without
decrypting them.

The i-th row encodes the information that this matrix is on value k. This
information is used to obtain the actual value assignment from the solution on
renamed/permuted variable values.

4.3 Renaming/Permutation

Next, agents perform the permutation of columns on each constraint matrix.
This means that agents transform the original problem into a new problem in
which variable values are renamed. More specifically, for each variable value k,
k is renamed as π(k), where π is a permutation of m elements, i.e., a bijective
map from {1, 2, . . . , m} to {1, 2, . . . , m}. Note that the domain of all variables is
common and agents perform the same permutation for all variables.

To make sure that no agent can know the result of the permutation, each
agent sequentially performs the permutation one by one. As a result, no agent
knows the result of the total permutation. By utilizing randomization, we cannot
know the result of the permutation even if we compare the matrices before and
after the permutation.

More specifically, agent j has its own permutation function πj(·). The com-
bined permutation function, i.e., π(·) is given by πn(πn−1(. . . π1(·) . . .)).

The detailed procedure is as follows.

– For each k, each agent i makes public (i, Ai,k).
– From 1 to n, each agent j sequentially applies permutation function πj to

these matrices. More specifically, agent 1 first applies the permutation func-
tion π1(·) to columns for all Ai,k and makes public the result, where each
element of the matrix is randomized by multiplying E(1). Next, agent 2 ap-
plies the permutation function π2(·), and so on. Let us denote the final result
as (i, A′

i,k).
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Fig. 2. Overview of Secure DisCSP Algorithm



– Decryptors cooperatively decrypt the i-th row of A′
i,k. If the k′-th element is

not equal to 1, i.e., it is equal to Ei(k), then decryptors send (k′, Ei(k), A′
i,k)

to value-selector i. Note that k′ = π(k).

Figure 2 (c) shows the result of the permutation 1 → 2, 2 → 4, 3 → 1, 4 → 3 for
the constraint matrix described in Figure 2 (b).

By using the above procedure, each value-selector i gets the constraint matri-
ces associated with xi, where variable values are renamed/permuted by k → k′,
where k′ = π(k).

4.4 Search Procedure

In this section, we show the search procedure performed by the search-controller,
decryptors, and value-selectors. The search-controller controls the search pro-
cess. For each variable xi, there exists value selector i. Value-selector i selects a
renamed variable value for xi. The decryptors perform decryption (Figure 2 (d)).

Partial Solution← {};
send start-round messages to all value-selectors;
wait until receiving all v(i, j);
SELECT-VARIABLE: select variable xi which is not in Partial Solution;
if all variables are already included in Partial Solution
then inform value-selectors that the current assignment is a solution;

terminate the procedure;
else pos← i;

CHECK: P ←∏
j
v(pos, j) · v(j, pos), where xj ∈ Partial Solution;

send P to decryptors and wait for the decryption of P .
if the decryption of P is 1
then add xpos to Partial Solution, goto SELECT-VARIABLE;
else

ASK-NEXT-VALUE: send set-next-value message
to value-selector pos and wait for its reply;

when received ok message do
send start-round messages to all value-selectors;
wait until receiving all v(i, j); goto CHECK; end do;

when received backtrack message do
if Partial Solution is empty
then announce that there exists no solution;

terminate the procedure;
else remove variable xi′ that was added to to Partial Solution

most recently from Partial Solution;
pos← i′; goto ASK-NEXT-VALUE;

end if; end do; end if; end if;

Fig. 3. Procedure for Search-Controller



Procedure for Search-Controller
Figure 3 shows the procedure for the search-controller. The search-controller
performs the described search procedure that is equivalent to a standard chrono-
logical backtracking. Partial Solution represents a set of variables that are in
a partial solution. All constraints among variables within the partial solution
are satisfied. If a variable that is not in the partial solution does not satisfy
a constraint with a variable in the partial solution, the search-controller asks
the value-selector of the variable to change its current assignment. If the value-
selector has no other value, then the value of the variable that was most recently
added to the partial solution is changed (backtracking).

In the procedure described in Figure 3, if all constraints are satisfied, then
P is E(1), otherwise, P is E(zc), where c is the number of violated constraints,
since E is homomorphic. Also, since z is chosen so that zc mod p �= 1 for all
0 < c < q and 2(n − 1) < q, zc will not be equal to 1.

Procedure for Value-selector
Figure 4 shows the procedure for a value-selector i. Only this value-selector
knows the current assignment of variable xi. To check the constraints, when
value-selector i chooses di, it sends a randomized j-th row of A′

i,k in (di, Ei(k), A′
i,k)

to value-selector j. For example, if value-selector 2 chooses 2, it sends the first
row of the matrix of Figure 2 (c), i.e., [E(1), E(z), E(1), E(1)] to value-selector 1.
If value-selector j chooses dj for its variable xj , it chooses the dj-th element of
the communicated vector. For example, if value-selector 1 chooses 2, it chooses
the second element of [E(1), E(z), E(1), E(1)], i.e., E(z). If the decryption of
this element (which is performed by decryptors) is 1, this means the current
assignment of xi and xj satisfies the unary and binary constraints of agent i. In
this case, since the decryption is z, the current assignment of x1 and x2 does not
satisfy the constraints of agent 2.

Procedure for Decryptors
Each decryptor j has a share of secret key s, i.e., sj , where s =

∑
j sj. The

number of decryptors depends on the required level of security, i.e., by using
t + 1 decryptors, even if t (or less than t) decryptors collude to obtain the
private information of agents, they cannot decrypt constraint matrices directly.

If decryptors are asked to decrypt E(M) = (A, B), each decryptor j calcu-
lates Asj and exchanges the results. By calculating B/

∏
j Asj = B/As, decryp-

tors can obtain M .

Obtaining a Solution
One instance of a solution obtained under the permutation 1 → 2, 2 → 4, 3 → 1,
4 → 3 is d1 = 1, d2 = 2, d3 = 3, d4 = 4.

When each value-selector is informed by the search-controller that the current
assignment is a solution, it sends Ei(k) in (di, Ei(k), A′

i,k), where di is the current
assignment, to agent i, i.e., E1(3) to agent 1, E2(1) to 2, E3(4) to 3, and E4(2)



when initialized do
Done← {}, di ← a randomly chosen value from 1, . . . , m; end do;

when received start-round message do
send the following message for all value-selectors j �= i

V (i, j), where V (i, j) is a randomized j-th row of A′
i,k in (di, Ei(k), A′

i,k),
i.e., [A′

i,k(j, 1), . . . , A′
i,k(j, m)]; end do;

when received V (j, i) from value-selector j do
send v(j, i), which is a randomized di-th element of V (j, i),

to the search-controller; end do;

when received set-next-value message do
add di to Done,
if all values are already included in Done,
then set Done← {};

randomly choose new value di,
send backtrack message to the search-controller;

else randomly choose new value di that is not in Done;
send ok message to the search-controller; end do;

Fig. 4. Procedure for Value-Selector i

to 4. By decrypting Ei(k), agent i obtains the value k for its variable xi, which
is a part of the final solution.

5 Algorithm Characteristics

5.1 Security

It is clear that this algorithm does not leak any additional information to other
agents. Since constraint matrices are encrypted, an agent cannot get any in-
formation during the permutation phase. An agent does not participate in the
search phase. Therefore, the information an agent can get is the same as the case
where the agent obtains a part of the final solution from an oracle.

Next, we show that the algorithm does not leak any information to servers,
i.e., the search-controller, decryptors, and value-selectors. Since variable values
are renamed by permutation, each value-selector cannot know the actual real
value it is selecting. Also, the renamed assigned value is known only to one
value-selector. Therefore, neither a value-selector, the search-controller, nor an
decryptor is able to get any information on whether the values of two variables
are the same/different. Also, unless all decryptors collude, decryptors cannot
decrypt a constraint matrix directly.

Although the search-controller observes the search process, this information
is useless for updating the estimated probability that a particular assignment is a



part of the final solution. For example, let us assume the simplest case, i.e., there
exist two variables x1, x2, whose domain is {1, 2}. If the search-controller adds
x1 to Partial Solution first, when a solution is found, there are four possible
scenarios, i.e., 1) a solution is obtained immediately, 2) a solution is found after
changing x2’s value once, 3) a solution is obtained after changing x2 twice and
performing backtracking, 4) a solution is obtained after changing x2’s value
twice and performing backtracking, then changing x2’s value again. Regardless
of which pattern is observed, each of the four possible solutions, i.e., (x1 =
1, x2 = 1), (x1 = 1, x2 = 2), (x1 = 2, x2 = 1), and (x1 = 2, x2 = 2), is equally
probable.

Also, a value-selector observes only partial information of the search process.
Even if the value-selector can get the same information as decryptors, it still
cannot obtain any additional information on a particular assignment being a
part of the final solution.

If we do not perform renaming/permutation, value-selector i can learn the
final value assignment of variable xi. Also, if we do not distribute processing
among the search-controller, value-selectors, and decryptors, i.e., solve a problem
using a centralized server, although this server cannot know the actual value
assignments because of renaming/permutation, the server can tell whether two
variable values are the same/different.

5.2 Communication Costs

The search procedure of the secure DisCSP algorithm is equivalent to a standard
chronological backtracking. The number of rounds, i.e., the number of times
that the search-controller, value-selectors, and decryptors exchange messages,
becomes mn in the worst case.

For each round and for each constraint Ci
xi,xj

, value-selector i communicates
an m-element vector to value-selector j, and value-selector j communicates one
element of the vector to the search-controller. Also, decryptors must communi-
cate with each other to decrypt a ciphertext.

The required communication costs are clearly much larger than existing
DisCSP algorithms [5, 7, 10, 13–15]. However, this seems somewhat inevitable
if we wish to preserve the privacy of agents.

6 Discussion

In most of the existing DisCSP algorithms, each agent exchanges the tentative
value assignment with other agents, and final value assignments are made public
[5, 13–15]. In [10], an alternative formalization of DisCSP is presented in which
variables and domains are common knowledge and constraints are private infor-
mation. In the algorithm presented in [10], agents obtain a solution by explicitly
communicating information on constraints to each other.

In [7], an algorithm called distributed forward-checking algorithm is pre-
sented in which an agent communicates possible domains of variables that be-
long to other agents rather than its own assignments. This is similar to our



idea of communicating a row in a constraint matrix. However, in [7], encryp-
tion techniques are not used so private information is leaked during the search
process.

One promising application field of secure DisCSP algorithms is meeting
scheduling. In [3], the trade-off between the efficiency of an algorithm and privacy
of agents in meeting scheduling problems is discussed. In [6], a secure meeting
scheduling protocol that utilizes information security techniques is developed.
However, this protocol is specialized for a meeting scheduling problem in which
only a single meeting is scheduled. By applying our newly developed algorithm,
multiple meetings can be scheduled simultaneously.

It is well known that any combinatorial circuit can be computed securely by
using general-purpose multi-party protocols [1, 4]. Therefore, if we can construct
a combinatorial circuit that implements a constraint satisfaction algorithm, in
principle, such an algorithm can be executed securely (thus we do not need
to develop a specialized secure protocol for DisCSPs). However, implementing
a combinatorial circuit that executes a constraint satisfaction algorithm is not
easy, and the obtained circuit would be very large. Note that we need to create
a general purpose logic circuit to solve CSPs, not specialized hardware to solve
a particular problem instance (such as those discussed in [11]).

Furthermore, to execute such a general-purpose multi-party protocol, for each
computation of an AND gate in the circuit, the servers must communicate with
each other. Using such a general purpose multi-party protocol for a distributed
constraint satisfaction problem is not practical at all due to the required com-
munication costs.

7 Conclusions

In this paper, we developed a secure DisCSP algorithm. Our newly developed
algorithm utilizes an indistinguishable, homomorphic, and randomizable public
key encryption scheme. In this algorithm, multiple servers, which receive en-
crypted information from agents, cooperatively perform a search process and
obtain an encrypted solution. Then, a part of the encrypted solution is sent to
each agent. By using this algorithm, the private information of an agent is not
leaked during the search process to other agents or servers.

In this paper, we developed an algorithm whose performance is equivalent to
a basic chronological backtracking as a first step in developing secure DisCSP al-
gorithms. Our future works include 1) analyzing the robustness of the developed
algorithm against collusions of servers and agents, 2) developing new algorithms
that are more computationally efficient and require less communication costs
without sacrificing security/privacy.
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