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Abstract - This paper presents a new algorithm

for solving frequency assignment problems in cellu-

lar mobile systems using constraint satisfaction tech-

niques. The characteristics of this algorithm are as

follows: 1) instead of representing each call in a cell

(a unit area in providing communication services) as

a variable, we represent a cell (which has multiple

calls) as a variable that has a very large domain,

and determine a variable value step by step, 2) a

powerful cell-ordering heuristic is introduced, 3) a

branch-and-bound search that incorporates forward-

checking is performed, and 4) the limited discrepancy

search is introduced to improve the chance of �nding

a solution in a limited amount of search. Experi-

mental evaluations using standard benchmark prob-

lems show that this algorithm can �nd optimal or

semi-optimal solutions for these problems, and most

of the obtained solutions are better than or equiv-

alent to those of existing methods using simulated

annealing, tabu search, or neural networks. These

results show that state-of-the-art constraint satisfac-

tion/optimization techniques are capable of solving

realistic application problems when equipped with an

appropriate problem representation and heuristics.

I. Introduction

With growth in the demand of mobile telephone

services, the e�cient use of available spectrums is

becoming increasingly important. The studies of a

frequency assignment problem (also called a chan-

nel assignment problem) in cellular mobile systems

have a long history [1], [6], [7], [14], [16]. Various AI

techniques, including constraint satisfaction, simu-

lated annealing, neural networks, tabu search, and

GA, have been applied to this problem [2], [4], [5], [8],

[11]{[13], [17].

An overview of a frequency assignment problem is

as follows. There exists a set of geographically di-

vided, typically hexagonal regions called cells. Fre-

quencies (channels) must be assigned to each cell ac-

cording to the number of call requests. There exist

following three types of electro-magnetic separation

constraints.

� co-channel constraint: the same frequency can-

not be assigned to pairs of the cells that are ge-

ographically close to each other.

� adjacent channel constraint: similar frequencies

cannot be simultaneously assigned to adjacent

cells.

� co-site constraint: any pair of frequencies as-

signed to the same cell must have a certain sep-

aration.

The goal is to �nd a frequency assignment that satis-

�es the above constraints using a minimum number

of frequencies (more precisely, using the minimum

span of the frequencies).

It must be noted that there exist several varia-

tions of frequency assignment problems. The bench-

mark problems provided by the EUCLID-project

Combinatorial ALgorithms for Military Applications

(CALMA) project are well-known in the constraint

satisfaction/optimization research community1. This

type of problem arises from a military application,

and geographical information including cells is not

described in the problem speci�cation. Constraint

satisfaction/optimization techniques can solve this

type of problem quite e�ciently.

On the other hand, according to [17], constraint

satisfaction techniques are not very e�ective for solv-

ing frequency assignment problems discussed in this

paper. The most straightforward way for solv-

ing such problems using constraint satisfaction tech-

niques would be to represent each call as a variable

(whose domain is available frequencies), then to solve

the problem as a generalized graph-coloring problem.

However, solving real-life, large-scale problems using

this simple formulation seems rather di�cult with-

out avoiding the symmetries between calls within one

cell. In our new algorithm, instead of representing

each call as a variable, we represent a cell as a vari-

able that has a very large domain. Furthermore, we

determine the variable value step by step instead of

determining a variable value at one time.

A standard method for solving constraint opti-

mization problems, such as partial constraint sat-

isfaction problems [3], is a depth-�rst branch-and-

1The benchmark problems and technical reports are avail-

able from ftp://ftp.win.tue.nl/pub/techreports/CALMA/



bound search algorithm. In a branch-and-bound

search, we usually assume the existence of a heuristic

function that evaluates a node in a search tree. This

function estimates the quality of the solutions that

exist under the node in the search tree. However,

creating a good heuristic function (i.e., estimating

the number of required frequencies) is rather di�cult

in frequency assignment problems. To solve prob-

lems e�ciently without a good heuristic function, we

use limited discrepancy search techniques [10], [18] so

that the algorithm can limit the search e�orts to only

the part of the search tree where a solution is likely

to exist.

In this paper, we show the formal de�nition of the

problem in Section II, then describe the algorithm

that utilizes constraint satisfaction techniques in Sec-

tion III. Furthermore, we show experimental evalu-

ations using standard benchmark problems in Sec-

tion IV, and discuss the relation to other research in

Section V.

II. Frequency Assignment Problem

A frequency assignment problem is formalized as

follows. We follow the formalization used in [5], [6],

[11], [13], [16], [17]. Frequencies are represented by

positive integers 1; 2; 3; : : :.

Given: N : the number of cells

di, 1 � i � N : the number of requested calls

(demands) in cell i

cij , 1 � i; j � N : the frequency separation

required between a call in cell i and a call

in cell j

Find: fik, 1 � i � N , 1 � k � di: the frequency

assigned to the kth call in cell i.

such that,

subject to the separation constraints,

j fik � fjl j� cij , for all i; j; k; l except for
i = j and k = l,

minimize

maxfik for all i; k.

These constraints can be represented as an N � N
symmetric compatibility matrix C. In addition, a

set of requested calls can be represented by an N -

element demand vector D.

Example 1. The number of cells is N = 4,

C =

0
BB@

5 3 0 0

3 5 0 2

0 0 5 1

0 2 1 5

1
CCA ; D =

0
BB@

2

1

2

3

1
CCA :

Positive integers (frequencies) must be assigned

to fik, such that their maximum is a minimum,

subject to the separation constraints C.

In this example, there exist constraints between cell 1

and cell 2, cell 2 and cell 4, cell 3 and cell 4, namely,

the required minimum separations are 3, 2, and 1,

respectively.

In addition, a frequency assignment problem can

be represented using a graph. Figure 1 shows a graph

representing a problem in Example 1 (co-site con-

straints are not described in the graph). In this

graph, a vertex represents a cell, and an edge rep-

resents a constraint between cells. The number in

the vertex represents the number of call requests of

the cell (di), and the weight of an edge represents a

required separation (cij). This graph representation

is called a macro-graph [14].

2

3

cell 1

3

1

1

2

2

cell 2

cell 3 cell 4

Fig. 1. Example of Macro-graph

III. Algorithm

A. Basic Algorithm

We are going to describe the basic algorithm de-

veloped in this paper. In this algorithm, we �rst �x

the number of available frequencies M to a certain

upper-bound2, then �nd an assignment that satis�es

given separation constraints and a set of constraints

fik � M for all i; k using a backtracking algorithm.

When a solution is found, we set M to maxfik � 1,

where fik are frequencies used in the obtained solu-

tion, and continue the search process. This algorithm

can be considered as a depth-�rst branch-and-bound

algorithm.

In this algorithm, there exists an M-element vector

for each cell. An element of this vector represents

one frequency, where a value can be \assigned" (the

frequency is used at the cell) or \not-assigned" (the

frequency is not used). Figure 2 shows an example of

these vectors for the problem described in Example 1.

A blank element is \not-assigned", and \a" means

\assigned". This is an optimal assignment for this

problem.

By using this representation, the domain size of

a variable becomes 2M . Since this size will be very

large, determining the vector value of a cell at one

time is not practical. Therefore, we determine the

vector value step by step. We introduce tentative

values used during the search process for each vector

element. A vector element can be one of the following

2Such an upper-bound can be obtained using the heuristic

sequential methods described in [16].
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Fig. 2. Example of Cell Representation

three values, \assigned", \free", or \forbidden". The

value \assigned" means the frequency is used at the

cell, \forbidden" means the frequency cannot be used

at the cell due to separation constraints, and \free"

means the frequency is available at the cell.

We show the outline of the basic algorithm in Fig-

ure 3. In the initial state, all vector elements of a

cell are free, and stack is empty. This algorithm is

basically a depth-�rst branch-and-bound algorithm

that incorporates forward-checking [9]. Therefore, as

long as the cell-ordering heuristic and the frequency-

ordering heuristic are exhaustive, this algorithm can

eventually �nd an optimal solution. The worst-case

time complexity is O(MS
init), where Minit is the ini-

tial upper-bound of frequencies, and S =
PN

i=1 di.

B. Cell-ordering Heuristic

Now, we are going to describe the cell-ordering

heuristic used in Step 3 of the main procedure. A

commonly used rule of thumb for selecting a vari-

able in constraint satisfaction problems is to select

the variable that is most strongly constrained. For

example, we can select the variable with the smallest

domain after constraint propagation.

A simple extension of this heuristic calculates the

average number of free frequencies per one call for

each cell. More speci�cally, let us represent the

number of vector elements that are \assigned" for

cell i as assigni, and the number of vector elements

that are \free" as freei. We calculate the value

freei=(di�assigni) for each cell i (we call this value
average available frequencies, AAF), and select the

cell with the smallest AAF. For example, when se-

lecting a cell in Example 1, AAF is 11/2 for cell 1

and cell 3, 11 for cell 2, 11/3 for cell 4. As a result,

cell 4 is selected �rst.

However, we found that using only the AAF heuris-

tic is not very e�ective. This is because it tends to

select a cell that simply has many demands in the

shallow search nodes in the search tree, and does not

appropriately consider the strength of the constraints

among cells. For example, let us consider the situa-

tion after assigning frequencies of three calls of cell 4

(Figure 4). In the �gure, \x" means a vector element

that becomes \forbidden". In this case, the AAF for

both cell 2 and cell 3 is 4. However, selecting cell 3

main procedure

1. If the demands are fully satis�ed for all

cells, then a solution is found, call proce-

dure reduce-frequency. Go to Step 1 of

this procedure.

2. If a demand cannot be satis�ed for a cell,

call procedure backtrack, go to Step 1

of this procedure.

3. Select cell whose demands are not fully sat-

is�ed using a cell-ordering heuristic.

4. Select frequency for assigning one call of cell

using a frequency-ordering heuristic, and

set the vector element of the cell corre-

sponding to frequency to \assigned". Push

(\choice", cell, frequency) to stack.

Propagate constraints, i.e., set the vector

elements that interfere with frequency of

cell to \forbidden". Go to Step 1 of this

procedure.

procedure backtrack

1. If stack is empty, then there is no solu-

tion. Finish the algorithm and return best-

solution.

2. Pop an element (
ag, cell, frequency) from

stack.

3. If 
ag=\choice", then set the vector ele-

ment of the cell corresponding to frequency

to \forbidden", unpropagate constraints.

Push (\forbidden", cell, frequency) to stack,

and �nish this procedure.

4. If 
ag=\forbidden", set the vector element

of the cell corresponding to frequency to

\free". Go to Step 1 of this procedure.

procedure reduce-frequency

1. Record the current assignment as best-

solution.

2. Set max-frequency to the maximal fre-

quency used in the current assignment.

3. If no cell uses max-frequency, for each cell,

set each vector element larger than or equal

to max-frequency to \forbidden", set M to

max-frequency�1, �nish this procedure.

4. Pop an element (
ag, cell, frequency) from

stack.

5. If 
ag=\choice", then set the vector ele-

ment of the cell corresponding to frequency

to \free", unpropagate constraints.

Go to Step 3 of this procedure.

6. If 
ag=\forbidden", set the vector element

of the cell corresponding to frequency to

\free". Go to Step 3 of this procedure.

Fig. 3. Basic Algorithm



does not help to reduce the search space, since it does

not have any constraints between other cells except

cell 4, which is already fully assigned.

To take into account the strength of constraints

among cells, we invented an evaluation value for cell i
called generalized weighted degree (GWD) de�ned as

follows. X
j

cij � (assignj + 1)

In this formula, assignj is the number of assigned

frequencies of another cell j, and cij is the weight of
the edge3. We select the cell that has the maximal

GWD value. For example, in Figure 4, the GWD for

cell 2 is 11, while the GWD for cell 3 is 4. Therefore,

we prefer cell 2 to cell 3.

However, we found that using only the GWD

heuristic is also not very e�ective since it does not

take into account the demands, and it tends to make

poor decisions in the deep search nodes in the search

tree. Thus, we decided to combine these two heuris-

tics. Since we prefer a cell with a smaller AAF and

a larger GWD, we use the evaluation value obtained

by AAF/GWD, and select the cell with a minimal

AAF/GWD.

cell 1
1 2 3 4 5 6 7 8 9 10 11

cell 2

cell 3

cell 4 aa ax x x x x x xx
x
x x

x
x x

x
x x x

Fig. 4. Cell Status during Search Process

C. Frequency-ordering Heuristic

We are going to describe the frequency-ordering

heuristic used in Step 4 in the main procedure. The

simplest way would be to select the �rst (small-

est) free frequency (�rst-free). A more sophisticated

method would be to consider the impact of selecting a

frequency for other cells. Namely, for each frequency,

we calculate the number of vector elements of other

cells that turn from \free" to \forbidden" by select-

ing the frequency, and select the one that minimizes

this value (least-impact).

If the number of frequencies is large, this calcula-

tion can be very costly. However, we can reduce the

number of possibilities using co-site constraints. For

example, let us assume we are selecting the �rst fre-

quency for cell 4 in Example 1, and the number of

possible frequencies is 11. Since there are three de-

mands for cell 4, we cannot assign frequencies larger

than 6 for the second call, otherwise there is no free

3We add one to assignj , otherwise this value becomes 0 for

all cells in the initial state.

frequency for the third call. Then, if we assign 6 to

the second call, we have only one possibility, i.e., 1

for the �rst call.

We found that the least-impact heuristic is more

powerful than the �rst-free heuristic in �nding a so-

lution. On the other hand, the �rst-free heuristic can

�nd a better solution (a solution with a smaller max-

imal frequency) if it can �nd a solution. Therefore,

in our algorithm, we �rst use the �rst-free heuristic

in the 0-discrepancy search described in the next sub-

section. When the 0-discrepancy search fails to �nd

a solution, we switch to the least-impact heuristic.

D. Limiting Search E�orts

Although this method uses constraint propagation

(forward-checking) to reduce the search space, the

search tree of a real-life, large-scale problem is still

too large to perform an exhaustive search. We need

to limit the search e�orts to only the part of the

search tree where a solution is likely to exist.

One method for limiting the search e�orts is the

limited discrepancy search [10]. In the limited dis-

crepancy search, the search process initially chooses

only the best nodes according to a given heuristic

at each decision point in a search tree (this is called

0-discrepancy search). If a solution cannot be ob-

tained by the 0-discrepancy search, the search pro-

cess is allowed to select a sub-optimal node only

once at a decision point (1-discrepancy search). If

a solution cannot be obtained, then the search pro-

cess is allowed to select sub-optimal nodes twice (2-

discrepancy search). The number of allowed discrep-

ancies is increased one by one.

In our algorithm, we limit the number of discrepan-

cies for the frequency selection (in Step 4 of the main

procedure). More speci�cally, if a solution cannot be

found by selecting the best frequencies according to

the frequency-ordering heuristic, the search process

is allowed to choose the second-best or the third-

best frequencies. The original limited discrepancy

search algorithm is developed for searching a binary

tree, i.e., the branching factor is two. As shown in

[10], there are several alternatives for modifying the

limited discrepancy search algorithm to non-binary

search tree. In our algorithm, we weight discrepan-

cies depending on the order in the heuristic, i.e., the

second-best value is counted as 1-discrepancy, and

the third-best value is counted as 2-discrepancy. If

the current limit of discrepancies is 2, the algorithm

is allowed to choose a third-best value once, or choose

the second-best value twice4.

Furthermore, since the least-impact heuristic is less

informative in shallow nodes in the search tree, we

use a modi�ed version of the depth-bounded limited

discrepancy search described in [18]. In our algo-

4Another way is to count all values except the best as 1-

discrepancy. This is not practical in our frequency assignment

problems since the branching factor of a tree node can be very

large.



rithm, a discrepancy is allowed only in the nodes

whose depth is shallower than or equal to a given

depth-limit. In addition, we introduce a modi�ed

version of the bounded backtracking described in [18]

to allow a quick recovery from mistakes deep in the

tree. In the original version of the bounded back-

tracking, the algorithm is allowed to perform back-

tracking up to a �xed level. However, in the fre-

quency assignment problems, the branching factor of

a node may vary signi�cantly. Therefore, allowing

a �xed level of backtracking is inappropriate, since

the searched subtree can be too large or too small.

Therefore, we set the limit to the total number of

backtracking in the subtree. The algorithm is al-

lowed to perform a certain number of backtracking

in a subtree. If the number of backtracking exceeds

the limit, the subtree is discarded.

In Figure 5, we show an example of the nodes vis-

ited in a search tree. We assume that the heuristic

prefers left branches, and there exists no solution in

this search tree. Furthermore, we assume the depth-

limit is two and the limit of the total number of back-

tracking is one. In the 0-discrepancy search, the al-

gorithm follows the left branches and reaches node 1,

which is a dead-end. Since the algorithm is allowed to

perform backtracking once, it goes to node 2, which

is another dead-end. Since the algorithm reaches the

limit of backtracking, it discards the subtree and in-

creases the number of allowed discrepancies. In the

1-discrepancy search, the algorithm �rst follows the

left, then the right branch, and visits node 3 and

node 4. Note that discrepancies are allowed only at

the nodes within the depth-limit. The algorithm dis-

cards the subtree, and visits node 5 and node 6. In

the 2-discrepancy search, the algorithm visits node 7

and node 8.

21 3 4 5 6 87

depth-limit

Fig. 5. Limited Discrepancy Search with Bounded Backtrack-

ing

IV. Evaluations

We use benchmark problems called Philadel-

phia problems, which have been used widely in

previous researches including [4]{[6], [11], [16], [17].

These problems are formulated based on an area in

Philadelphia, Pennsylvania. The network consists of

21 cells as shown in Figure 6.

There are many variations for setting constraints

and demands. The parameter settings used in our

evaluations are described in Table I. In the table,

\Nc" means the square of required distance for co-

channel constraints, assuming that the distance be-

tween adjacent cells is 1. For example, if Nc=12,

while cell 1 and cell 5 can use the same frequency

(the distance is 4), cell 1 and cell 4 cannot (the dis-

tance is 3). \acc" represents the separation required

for adjacent channel constraints, and \cii" represents
co-site constraints. The demand vectors used in the

table are as follows (case 3 and case 4 are obtained

by multiplying 2 and 4 to case 1, respectively):

case 1: (8 25 8 8 8 15 18 52 77 28 13 15 31 15 36 57

28 8 10 13 8)

case 2: (5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15

15 30 20 20 25)

case 3: (16 50 16 16 16 30 36 104 154 56 26 30 62

30 72 114 56 16 20 26 16)

case 4: (32 100 32 32 32 60 72 208 308 112 52 60

124 60 144 228 112 32 40 52 32).

1

212019

181716151413

121110

2 3 4 5

6 7 8 9

Fig. 6. Cellular Geometry of Philadelphia Problems

TABLE I

Speci�cations for Philadelphia Problems

Instance Nc acc cii Demand

Vector

P1 12 2 5 case 1

P2 7 2 5 case 1

P3 12 2 7 case 1

P4 7 2 7 case 1

P5 12 2 5 case 2

P6 7 2 5 case 2

P7 12 2 7 case 2

P8 7 2 7 case 2

P9 12 2 5 case 3

P10 12 2 5 case 4

Table II shows the theoretical lower-bounds re-

ported in [11], [16] and the results obtained with our

constraint satisfaction method (CS). In this method,

to �nish the algorithm execution within a reasonable



amount of time, we set the limit of the visited nodes

to 10,000. We terminate the execution when the al-

gorithm exceeds this limit, and use the best solution

obtained so far. Also, we set the depth-limit where

the discrepancy is allowed to 10, and the number of

allowed backtracking to 100.

To the extent of the authors' knowledge, the best

published results for these problems have been ob-

tained by FASoft [11], [17] and [4]. FASoft is an inte-

grated package of various methods for solving fre-

quency assignment problems, such as heuristic se-

quential methods, methods using constraint satis-

faction techniques, Simulated Annealing, GA, tabu

search, etc. We show the results obtained with Simu-

lated Annealing (SA) and tabu search (TS) reported

in [11]. These two methods are the most e�cient

among the various components of FASoft. Further-

more, we show the best results obtained with a set

of heuristic sequential methods (SE) reported in [16],

and the results obtained with neural networks (NN)

reported in [4] (\..." in the table means that the

result is not reported).

As shown in the table, our algorithm obtains opti-

mal solutions for the instances of P1, P2, P3, P4, P7,

P8, P10, and obtains semi-optimal solutions that are

very close to the optimal for other problem instances.

Moreover, this method can obtain better or equiva-

lent solutions compared with existing methods for all

problem instances except P5 (where NN is better),

TABLE II

Comparison of Solution Quality (Philadelphia Problems)

Instance Lower CS TS SA SE NN

Bound

P1 427 427 429 429 460 427

P2 427 427 430 439 447 427

P3 533 533 ... ... 536 533

P4 533 533 ... ... 533 533

P5 258 261 270 261 283 258

P6 253 258 258 260 270 258

P7 309 309 ... ... 310 309

P8 309 309 ... ... 310 309

P9 856 857 859 859 ... ...

P10 1714 1714 1725 1725 ... ...

Furthermore, to examine the e�ciency of the pro-

posed algorithm in larger-scale problems, we show

the evaluation results for the benchmark problems

presented in [4], [12]. There are 7 � 7 symmetrically

placed cells (49 cells in all) in these problems. Prob-

lem parameters are described in Table III, where

\cij" is the minimal frequency separation between

any pair of cells whose distance is less than
p
N c, ex-

cept for adjacent cells. The demand vector is: (19 14

11 13 15 23 21 25 19 20 21 17 10 18 27 23 29 10 17

16 22 14 19 14 22 27 28 25 30 14 18 28 26 12 10 27

29 11 18 24 24 20 25 12 22 25 29 19 14). This vector

is randomly generated from a uniform distribution

between 10 and 30. There are 976 calls in total.

Table IV shows the results obtained with our new

TABLE III

Speci�cations for Kim's Benchmark Problems

Instance Nc cij acc cii

K1 7 1 1 3

K2 7 2 3 5

K3 7 3 4 7

TABLE IV

Comparison of Solution Quality (Kim's Benchmark

Problems)

Instance CS NN SE

K1 168 168 178

K2 422 435 473

K3 619 630 673

method (CS). The parameter settings of the algo-

rithm are identical to those of the Philadelphia Prob-

lems. For comparison, we show the results described

in [4], i.e., the results obtained using neural networks

(NN), and the best results obtained with a set of

heuristic sequential methods (SE). Our method ob-

tains much better solutions than those of NN for K2

and K3.

Table V shows the total execution time of this algo-

rithm. Although the execution time is obtained by a

naive LISP implementation on a Sun Ultra 30 Model

300 (Ultra SPARC-II 296MHz), we can see that very

high-quality solutions are obtained within a reason-

ably short running time. Since the optimality of the

obtained solution is guaranteed before reaching the

limit of the visited nodes in P3 and P4, the execu-

tion time for these instances is very short. It must

be noted unlike constraint satisfaction/optimization

studies, the primary evaluation criterion in these

benchmark problems is the solution quality. The ex-

ecution time of the algorithms seems less important

and not often reported in the literature. One reason

for this is that most algorithms (including our algo-

rithm) show rapid improvements in the early stage of

the search process, then the improvements saturate

very quickly, and the solution quality cannot be sig-

ni�cantly improved even after a very long execution

time (e.g., a day).

V. Discussion

In [11], [17], it is reported that optimal solutions

for the Philadelphia problems can be obtained us-

ing cliques. In this method, a maximal or some large

clique in amicro-graph (where each call is represented

as a vertex) is identi�ed �rst, then frequencies are as-

signed to the calls in the clique. Subsequently, this

partial solution is iteratively extended by adding calls

to the partial solution until it becomes a complete

solution. One drawback to this method is that �nd-

ing the maximal clique is another NP-complete prob-

lem and time-consuming (note that a micro-graph is

much larger than a macro-graph). Furthermore, this



TABLE V

Algorithm Execution Time

Instance Execution

Time (sec)

P1 49.3

P2 59.4

P3 0.1

P4 0.1

P5 35.3

P6 37.0

P7 85.4

P8 90.9

P9 112.9

P10 188.3

K1 79.4

K2 133.0

K3 198.9

clique method is not fully automated, i.e., it requires

human trial-and-error selections of cliques and exten-

sion methods. Our method and this clique method

are not mutually exclusive, namely, our method can

be used for �nding a partial solution for the clique

and extending the partial solution.

A macro-graph is introduced in [14] to solve fre-

quency assignment problems. However, this method

uses a macro-graph not to directly solve a problem,

but to obtain upper-bounds of the problem. A simi-

lar problem representation used in this paper is intro-

duced in [4], [5] for solving the problem using neural

networks.

VI. Conclusion and Future Issues

We have developed a new algorithm for solv-

ing frequency assignment problems in cellular mo-

bile systems. This algorithm is basically a depth-

�rst branch-and-bound procedure that incorporates

forward-checking. In this algorithm, we represent a

cell as a variable with a very large domain, and deter-

mine the variable value step by step. Furthermore,

we have developed a powerful cell-ordering heuris-

tic and introduced the limited discrepancy search to

cope with large-scale problems. Experimental eval-

uations using standard benchmark problems showed

that for most of the problem instances, this algo-

rithm can �nd better or equivalent solutions com-

pared with existing optimization methods. These re-

sults imply that state-of-the-art constraint satisfac-

tion/optimization techniques are capable of solving

realistic application problems, if we choose the ap-

propriate problem representation and heuristics.

There is plenty of room for improvement in this

algorithm. Currently, various algorithm parameters

(e.g., the depth-limit, the limit of the number of back-

tracking) are adjusted by hand. It would be desirable

if these parameters can be dynamically tuned accord-

ing to the characteristics of the solved problem in-

stances. Our future works also include introducing

local-consistency algorithms that are stronger than

forward-checking (e.g., [15]), introducing the limited

discrepancy search to the cell-ordering heuristic, and

using hybrid type algorithms of backtracking and it-

erative improvement (e.g., [19]).
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