
Distributed Breakout Algorithm for Solving Distributed Constraint
Satisfaction Problems

Makoto Yokoo
NTT Communication Science Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun,
Kyoto 619-02 Japan

e-mail: yokoo@cslab.kecl.ntt.jp

Katsutoshi Hirayama
Kobe University of Mercantile Marine

5-1-1 Fukae-minami-machi, Higashinada-ku,
Kobe 658, JAPAN

e-mail: hirayama@ti.kshosen.ac.jp

Abstract

This paper presents a new algorithm for solving dis-
tributed constraint satisfaction problems (distributed
CSPs) called the distributed breakout algorithm, which
is inspired by the breakout algorithm for solving cen-
tralized CSPs. In this algorithm, each agent tries to
optimize its evaluation value (the number of constraint
violations) by exchanging its current value and the
possible amount of its improvement among neighbor-
ing agents. Instead of detecting the fact that agents
as a whole are trapped in a local-minimum, each
agent detects whether it is in a quasi-local-minimum,
which is a weaker condition than a local-minimum,
and changes the weights of constraint violations to
escape from the quasi-local-minimum. Experimental
evaluations show this algorithm to be much more ef-
�cient than existing algorithms for critically di�cult
problem instances of distributed graph-coloring prob-
lems.

Introduction

A constraint satisfaction problem (CSP) is a gen-
eral framework that can formalize various problems
in AI, and many theoretical and experimental stud-
ies have been performed (Mackworth 1992). In Yokoo
et al. (1992), a distributed constraint satisfaction prob-
lem (distributed CSP) is formalized as a CSP in which
variables and constraints are distributed among multi-
ple automated agents. Various application problems
in DAI which are concerned with �nding a consis-
tent combination of agent actions (e.g., distributed re-
source allocation problems (Conry et al. 1991), dis-
tributed scheduling problems (Sycara et al. 1991), dis-
tributed interpretation tasks (Mason & Johnson 1989)
and multi-agent truth maintenance tasks (Huhns &
Bridgeland 1991)) can be formalized as distributed
CSPs. Therefore, we can consider a distributed CSP
as a general framework for DAI, and distributed algo-
rithms for solving distributed CSPs as an important
infrastructure in DAI.
It must be noted that although algorithms for solv-

ing distributed CSPs seem to be similar to paral-
lel/distributed processing methods for solving CSPs
(Collin, Dechter, & Katz 1991; Zhang & Mackworth

1991), research motivations are fundamentally di�er-
ent. The primary concern in parallel/distributed pro-
cessing is the e�ciency, and we can choose any type of
parallel/distributed computer architecture for solving
a given problem e�ciently. In contrast, in a distributed
CSP, there already exists a situation where knowledge
about the problem (i.e., variables and constraints) is
distributed among automated agents. Therefore, the
main research issue is how to reach a solution from this
given situation.
The authors have developed a series of algorithms

for solving distributed CSPs, i.e., (a) a basic algorithm
called asynchronous backtracking (Yokoo et al. 1992),
in which agents act asynchronously and concurrently
based on their local knowledge without any global con-
trol, (b) a more e�cient algorithm called asynchronous

weak-commitment search (Yokoo 1995), in which the
priority order of agents is changed dynamically, and
(c) a distributed iterative improvement algorithm (Hi-
rayama & Toyoda 1995), where agents can escape from
local-minima by forming coalitions among themselves.
In this paper, we develop a new distributed iterative

improvement algorithm called the distributed breakout

algorithm, which is inspired by the breakout algorithm
(Morris 1993) for solving centralized CSPs. The main
characteristic of this algorithm is as follows.

� Instead of detecting the fact that agents as a whole
are trapped in a local-minimum, each agent detects
the fact that it is in a quasi-local-minimum, which
is a weaker condition than a local-minimum, and
changes the weights of constraint violations.

Experimental results on particularly di�cult in-
stances of distributed graph-coloring problems show
that the distributed breakout algorithm is much more
e�cient than existing algorithms (i.e., a �fteen-fold
speed-up can be obtained).
In the remainder of this paper, we show the de�ni-

tion of a distributed CSP. Then, we brie
y describe the
breakout algorithm for solving centralized CSPs, and
describe the basic ideas and details of the distributed
breakout algorithm. Furthermore, we show empirical
results which illustrate the e�ciency of this algorithm.
Finally, we compare characteristics of the distributed

breakout algorithm and existing algorithms.

Distributed Constraint Satisfaction

Problem

A CSP consists of n variables x1; x2; : : : ; xn, whose
values are taken from �nite, discrete domains
D1;D2; : : : ; Dn, respectively, and a set of constraints
on their values. A constraint is de�ned by a pred-
icate. That is, the constraint pk(xk1; � � � ; xkj) is a
predicate which is de�ned on the Cartesian product
Dk1 � : : : � Dkj . This predicate is true i� the value
assignment of these variables satis�es this constraint.
Solving a CSP is equivalent to �nding an assignment
of values to all variables such that all constraints are
satis�ed.
A distributed CSP is a CSP in which the vari-

ables and constraints are distributed among automated
agents. We assume that the communication between
agents is done by sending messages. Each agent has
some variables and tries to determine their values.
The value assignment must satisfy the inter-agent con-
straints.
Without loss of generality, we make the following

assumptions while describing our algorithm for sim-
plicity. Relaxing these assumptions to general cases is
relatively straightforward.

� Each agent has exactly one variable.

� All constraints are binary.

We can represent a distributed CSP in which all con-
straints are binary as a network, where variables are
nodes and constraints are links between nodes. Since
each agent has exactly one variable, a node also rep-
resents an agent. In the following, we use the same
identi�er xi to represent an agent and its variable.
For an agent xi, we call a set of agents, each of which

is directly connected to xi by a link, as neighbors of xi.
Also, a distance between two agents is de�ned as the
number of links of the shorted path connecting these
two agents. For example, Figure 1 shows one instance
of a distributed graph-coloring problem, in which six
agents exist. Each agent tries to determine its color
so that neighbors do not have the same color (possible
colors are white and black). The neighbors of x1 are
fx2; x6g, and the distance between x1 and x4 is 3.

Distributed Breakout Algorithm

In this section, we brie
y describe the breakout algo-
rithm for solving CSPs (Morris 1993), and describe
how a similar algorithm can be implemented for dis-
tributed CSPs.

Breakout algorithm

The breakout algorithm (Morris 1993) is one kind of
iterative improvement algorithms (Minton et al. 1992;
Selman, Levesque, & Mitchell 1992). In these algo-
rithms, a
awed solution containing some constraint

x1

x2

x3 x4

x5

x6

Figure 1: Example of a Constraint Network

violations is revised by local changes until all con-
straints are satis�ed. In the breakout algorithm, a
weight is de�ned for each pair of variable values that
does not satisfy constraints (the initial weight is 1),
and the summation of the weights of constraint violat-
ing pairs is used to evaluate the
awed solution. In the
initial state, the summation is equal to the number of
the constraint violations. In the breakout algorithm,
a variable value is changed to decrease the evaluation
value (i.e., the number of constraint violations). This
strategy is called the min-con
ict heuristic (Minton et

al. 1992).
If the evaluation value can not be decreased by

changing the value of any variable, the current state
is called a local-minimum. When trapped in a
local-minimum, the breakout algorithm increases the
weights of constraint violating pairs in the current state
by 1 so that the evaluation value of the current state
becomes larger than the neighboring states; thus the
algorithm can escape from a local-minimum. Although
the breakout algorithm is very simple, Morris (1993)
shows that it outperforms other iterative improvement
algorithms (Minton et al. 1992; Selman, Levesque, &
Mitchell 1992).

Basic Ideas

In applying the breakout algorithm to distributed
CSPs, we encounter the following di�culties.

� If we allow only one agent to change its value at a
time, we can not take advantage of parallelism. On
the other hand, if two neighboring agents are allowed
to change their values at the same time, the evalua-
tion value may not be improved, and an oscillation
(the agents continue the same actions repeatedly)
may occur.

� To detect the fact that agents as a whole are trapped
in a local-minimum, the agents have to globally ex-
change information among themselves.

In order to solve these di�culties, we introduce the
following ideas.

� Neighboring agents exchange values of possible im-
provements, and only the agent that can maximally

improve the evaluation value is given the right to
change its value. Note that if two agents are not
neighbors, it is possible for them to change their val-
ues concurrently.

� Instead of detecting the fact that agents as a whole
are trapped in a local-minimum, each agent detects
the fact that it is in a quasi-local-minimum, which
is a weaker condition than a local-minimum and can
be detected via local communications.

In this algorithm, two kinds of messages (ok? and
improve) are communicated among neighbors. The ok?
message is used to exchange the current value assign-
ment of the agent, and the improve message is used to
communicate the possible improvement of the evalua-
tion value, by a change in the agent's value. By ex-
changing the improve messages among neighbors and
giving only to the agent that can maximally improve
the evaluation value the right to change its value, the
neighbors will not change their values concurrently,
while non-neighbors can.
We de�ne the fact that agent xi is in a quasi-local-

minimum as follows.

� xi is violating some constraint, and the possible im-
provement of xi and all of xi's neighbors is 0.

It is obvious that if the current situation is a (real)
local-minimum, each of the constraint violating agents
is in a quasi-local-minimum, but not vice versa. For
example, in Figure 1, although x1 is in a quasi-local-
minimum, this situation is not a real local-minimum
since x5 can improve the evaluation value.
Increasing the weights in quasi-local-minima that are

not real local-minima may adversely a�ect the perfor-
mance if the evaluation function is modi�ed too much.
We will evaluate the e�ect of increasing the weights in
quasi-local-minima rather than real local-minima.
These ideas are basically equivalent to those used

in the authors' previous work on the distributed itera-
tive improvement algorithm presented in Hirayama &
Toyoda (1995). However, the algorithm is much sim-
pler than the one in Hirayama & Toyoda (1995), since
agents independently increase the weights of constraint
violations in a quasi-local-minimum, rather than nego-
tiate to form coalitions.

Details of Algorithm

In this algorithm, each agent randomly determines its
initial value, then sends ok? messages to its neighbors.
After receiving ok? messages from all of its neighbors,
it calculates its current evaluation value (the summa-
tion of the weights of constraint violating pairs related
to its variable) and the possible improvement of the
evaluation value, and sends improve messages to its
neighbors.
The procedures executed at agent xi when receiving

ok? and improve messages are shown in Figure 2. The
agent alternates in the wait ok? mode (Figure 2 (i))
and the wait improve mode (Figure 2 (ii)).

In the wait ok? mode, xi records the value assign-
ment of a neighbor in its agent view. After receiv-
ing ok? messages from all neighbors, it calculates its
current evaluation value and a possible improvement,
sends improve messages to its neighbors, and enters
the wait improve mode.

The meanings of the state variables used in this al-
gorithm are as follows:

can move: represents whether xi has the right to
change its value. If the possible improvement of a
neighbor xj is larger than the improvement of xi,
or the possible improvements are equal and xj pre-
cedes xi in alphabetical order, can move is changed
to false.

quasi local minimum: represents whether xi is in a
quasi-local-minimum. If the possible improvement
of a neighbor xj is positive, quasi local minimum is
changed to false.

my termination counter: is used for the termina-
tion detection of the algorithm. If the value of
my termination counter is d, every agent whose
distance from xi is within d satis�es all of
its constraints. We assume that xi knows
the maximal distance to other agents or an
appropriate upper-bound max distance. If the
value of my termination counter becomes equal to
max distance, xi can con�rm that all agents satisfy
their constraints.

The correctness of this termination detection proce-
dure can be inductively proven using the fact that
the my termination counter of xi is increased from
d to d + 1 i� each neighbor of xi satis�es all of its
constraints and the my termination counter of each
neighbor is equal to or larger than d.

After receiving improve messages from all neighbors,
xi changes the weights of constraint violations if the
state variable quasi local minimum is true. Since each
agent independently records the weights, neighboring
agents do not need to negotiate about increasing the
weights. If the state variable can move is true, xi's
value is changed; otherwise, the value remains the
same. The agent sends ok? messages and enters the
wait ok? mode.

Due to the delay of messages or di�erences in the
processing speeds of agents, xi may receive an improve
message even though it is in the wait ok? mode, or vice
versa. In such a case, xi postpones the processing of
the message, and waits for a next message. The post-
poned message is processed after xi changes its mode.
On the other hand, since an agent can not send ok?
messages unless it receives improve messages from all
neighbors, xi in the wait ok? mode will never receive
an ok? message that should be processed in the next or
previous cycle. The same is true for improve messages.

wait ok? mode | (i)

when received (ok?, xj , dj) do

counter counter + 1;
add (xj , dj) to agent view;

when counter = number of neighbors do

send improve; counter 0;
goto wait improve mode; end do;

goto wait ok mode; end do;

procedure send improve

current eval evaluation value of current value;

my improve possible maximal improvement;
new value

the value which gives the maximal improvement;

if current eval = 0 then consistent true;

else consistent false;

my termination counter 0; end if;

if my improve > 0

then can move true; quasi local minimum false;

else can move false;

quasi local minimum true; end if;

send (improve, xi, my improve, current eval,

my termination counter) to neighbors;

wait improve? mode | (ii)

when received (improve, xj , improve,

eval, termination counter) do

counter counter + 1;

my termination counter

min(termination counter, my termination counter)

when improve > my improve do

can move false;

quasi local minimum false; end do;

when improve = my improve and xj precedes xi do

can move false; end do;

when eval > 0 do

consistent false; end do;

when counter = number of neighbors do

send ok; counter 0; clear agent view;

goto wait ok mode; end do;

goto wait improve mode; end do;

procedure send ok

when consistent = true do

my termination counter my termination counter +1;

when my termination counter = max distance do

notify neighbors that a solution has been found;

terminate the algorithm;
end do; end do;

when quasi local minimum = true do

increase the weights of constraint violations; end do;
when can move = true do

current value new value; end do;

send (ok?, xi, current value) to neighbors;

Figure 2: Procedures for receiving messages

Example of Algorithm Execution

We show an example of algorithm execution in Fig-
ure 3. This problem is an instance of a distributed
graph-coloring problem, where the possible colors of
agents are black and white.
We assume that initial values are chosen as in Fig-

ure 3(a). Each agent communicates this initial value
via ok? messages. After receiving ok? messages
from all of its neighbors, each agent calculates cur-

rent evaluation and my improvement, and exchanges
improve messages. Initially, all weights are equal to
1. In the initial state, the improvements of all agents
are equal to 0. Therefore, the weights of constraint
violating pairs (x1=white and x6=white, x2=black
and x5=black, and x3=white and x4=white) are in-
creased by 1 (Figure 3(b)). Then, the improvements
of x1; x3; x4, and x6 are 1, and the improvements of x2
and x5 are 0. The agents that have the right to change
their values are x1 and x3 (each of which precedes in
the alphabetical order within its own neighborhood).
They each change their value from white to black (Fig-
ure 3(c)). Then, the improvement of x2 is 4, while the
improvements of the other agents are 0. Therefore,
x2 changes its value to white, and all constraints are
satis�ed (Figure 3(d)).

Evaluation

In this section, we evaluate the e�ciency of distributed
constraint satisfaction algorithms by a discrete event
simulation, where each agent maintains its own sim-
ulated clock. An agent's time is incremented by one
simulated time unit whenever it performs one cycle of
computation. One cycle consists of reading all incom-
ing messages, performing local computation, and then
sending messages. We assume that a message issued at
time t is available to the recipient at time t+1. We an-
alyze the performance in terms of the number of cycles
required to solve the problem. One cycle corresponds
to a series of agent actions, in which an agent recog-
nizes the state of the world, then decides its response
to that state, and communicates its decisions. In the
distributed breakout algorithm, each mode (wait ok?
or wait improve) requires one cycle. Therefore, each
agent can change its value at most once in two cycles.
We are going to compare the distributed breakout

algorithm (DB), the asynchronous weak-commitment
search algorithm (AWC) (Yokoo 1995), and the iter-
ative improvement algorithm presented in Hirayama
& Toyoda (1995). We call this algorithm hill-

climbing+coalition (HCC). In HCC, we use the al-
truistic strategy (Hirayama & Toyoda 1995) in coali-
tions, and make all coalitions broken up to restart with
new initial values if one of coalitions grows up to the
state where it includes over 5 agents. Furthermore,
to examine the e�ect of changing weights in quasi-
local-minima, rather than real local-minima, we show
the result of an algorithm in which each agent broad-
casts messages not only to its neighbors but to all

x1

x2

x3 x4

x5

x6

(a) (b)

2x1

x2

x3 x4

x5

x6
2

2 2

2 2

(d)

x1

x2

x3 x4

x5

x6

(c)

x1

x2

x3 x4

x5

x6

2 2

Figure 3: Example of algorithm execution

agents, and increases the weights only in a real local-
minimum. We call this algorithm distributed breakout

with broadcasting (DB+BC). In this algorithm, mes-
sages from non-neighbors are used only for detecting
local-minima, and other procedures are equivalent to
the original distributed breakout algorithm.

We use the distributed graph-coloring problem for
our evaluations. This problem can represent various
application problems such as channel allocation prob-
lems in mobile communication systems, in which ad-
joining cells (regions) can not use the same channels to
avoid interference. A distributed graph-coloring prob-
lem can be characterized by three parameters, i.e., the
number of agents/variables n, the number of possible
colors of each agent k, and the number of links between
agents m. We randomly generated a problem with n

agents/variables and m arcs by the method described
in Minton et al. (1992), so that the graph is connected
and the problem has a solution.

First, we evaluated the problem for n = 90, 120, and
150, where m = n � 2, k=3. This parameter setting
corresponds to the \sparse" problems for which Minton
et al. (1992) reported poor performance of the min-
con
ict heuristic. We generated 10 di�erent problems,
and for each problem, 10 trials with di�erent initial
values were performed (100 trials in all). The initial
values were set randomly. The results are summarized
in Table 1. For each trial, in order to conduct the
experiments within a reasonable amount of time, we
set the limit for the number of cycles at 10000, and
terminated the algorithm if this limit was exceeded;
we counted the result as 10000. We show the ratio
of trials completed successfully to the total number of
trials in the table.

Furthermore, we show results where the number of
links m = n � 2:7 and m = n � (n � 1)=4 in Table 2
and Table 3, respectively. The setting where k = 3
and m = n � 2:7 has been identi�ed as a critical set-
ting which produces particularly di�cult problems in
Cheeseman, Kanefsky, & Taylor (1991). The setting
where m = n � (n � 1)=4 represents the situation in
which the constraints among agents are dense.

Finally, we evaluated the problem for n = 60, 90,
and 120, where m = n� 4:7 and k=4. This parameter

setting has also been identi�ed as critical setting which
produces particularly di�cult problems in Cheeseman,
Kanefsky, & Taylor (1991). The results are summa-
rized in Figure 4. The limit of the cycles was set to
40000 in this setting.
We can see the following facts from these results.

For \sparse" and \dense" problems, the asyn-
chronous weak-commitment search algorithm is
most e�cient. Since these problems are relatively
easy, the overhead for controlling concurrent actions
among neighbors does not pay. Note that in the dis-
tributed breakout algorithm, an agent can change its
value at most once in two cycles, and in the hill-
climbing algorithm, an agent can change its value once
in three cycles (i.e., sending negotiate, sending reply,
and sending state), while in the asynchronous back-
tracking algorithm, an agent can change its value in
every cycle.

For critically di�cult problem instances, the
distributed breakout algorithm is most e�cient.
On the other hand, in centralized CSPs, it has been
pointed out that even for critically di�cult problems,
the weak-commitment search algorithm (the central-
ized version of the asynchronous weak-commitment
search algorithm) is much more e�cient than the
breakout algorithm (Yokoo 1994). What causes this
di�erence?
First, in the (centralized) weak-commitment search

algorithm, various variable ordering heuristics such as
forward-checking and the �rst-fail principle (Haralick
& Elliot 1980) are introduced, and by performing a
look-ahead search before determining a variable value,
the algorithm can avoid choosing a value that leads to
an immediate failure. Although it is possible to in-
troduce variable/agent ordering heuristics in the asyn-
chronous weak-commitment search algorithm, it is dif-
�cult to perform a look-ahead search in distributed
CSPs since the knowledge about the problem is dis-
tributed among multiple agents.
Furthermore, the breakout algorithm requires more

computations in each cycle (i.e., changing one variable
value or changing weights) than the weak-commitment

Table 1: Evaluation with \sparse" problems (k = 3;m = n� 2)
DB DB+BC AWC HCC

n ratio cycles ratio cycles ratio cycles ratio cycles
90 100% 150.8 100% 230.4 100% 70.1 98% 533.5
120 100% 210.1 100% 253.4 100% 106.4 100% 538.4
150 100% 278.8 100% 344.5 100% 159.2 99% 1074.2

Table 2: Evaluation with \critical" problems (k = 3;m = n� 2:7)
DB DB+BC AWC HCC

n ratio cycles ratio cycles ratio cycles ratio cycles
90 100% 517.1 100% 397.1 97% 1869.6 66% 5305.7
120 100% 866.4 100% 693.0 65% 6428.4 37% 7788.2
150 100% 1175.5 100% 687.7 29% 8249.5 19% 8874.0

Table 3: Evaluation with \dense" problems (k = 3;m = n� (n� 1)=4)
DB DB+BC AWC HCC

n ratio cycles ratio cycles ratio cycles ratio cycles
90 100% 31.2 100% 31.2 100% 9.9 100% 65.6
120 100% 34.6 100% 34.4 100% 9.3 100% 70.2
150 100% 34.9 100% 34.9 100% 9.6 100% 70.7

Table 4: Evaluation with \critical" problems (k = 4;m = n� 4:7)

DB DB+BC AWC HCC
n ratio cycles ratio cycles ratio cycles ratio cycles
60 100% 591.3 100% 497.1 100% 1733.6 61% 19953.8
90 100% 1175.8 100% 691.8 83% 14897.3 26% 32923.9
120 100% 2218.1 100% 1616.7 25% 34771.6 9% 38028.1

search algorithm. More speci�cally, when selecting
a variable to modify its value, the weak-commitment
search algorithm can choose any of constraint violating
variables, while the breakout algorithm must choose a
variable so that the number of constraint violations
can be reduced. Therefore, in the worst case (when
the current state is a local-minimum), the breakout al-
gorithm has to check all the values for all constraint
violating variables.
On the other hand, in the distributed breakout al-

gorithm, the computations for each variable are per-
formed concurrently bymultiple agents. Therefore, the
required computations of an agent for each cycle in the
distributed breakout algorithm are basically equivalent
to those in the asynchronous weak-commitment search
algorithm. In other words, the potential parallelism
in the breakout algorithm is greater than that in the
weak-commitment search algorithm.

Increasing the weights in quasi-local-minima
that are not real local-minima does not ad-
versely a�ect the performance in the \sparse"
and \dense" problems. The performance is even
increased in \sparse" problems. This result can be
explained as follows. Assume xi is in a quasi-local-
minimum, while the current state is a not real local-
minimum since xj (which is a non-neighbor of xi) can
improve the evaluation value. If the constraints among
agents are sparse, the e�ect of changing xj's value to
xi would be relatively small. Therefore, the chance
that xi will be not in a quasi-local-minimum after xj
changes its value is very slim, i.e., eventually the state
would be a real local-minimum. When the constraints
are dense, the chance of trapped in a quasi or real
local-minimum is very small.

In critically di�cult problems, increasing the
weights in quasi-local-minima that are not real
local-minima does adversely a�ect the perfor-
mance. For example, in the case where n = 120; k =
4, and m = n � 4:7, the distributed breakout algo-
rithm requires 40% more steps than the distributed
breakout algorithm with broadcasting. However, the
broadcasting algorithm requires a lot more (more than
10 times as many) messages than the original dis-
tributed breakout algorithm. Considering the cost of
sending/receiving these additional messages, the per-
formance degradation by increasing weights in quasi-
local-minima seems to be acceptable.

The hill-climbing+coalition is not very e�cient
for all problems, especially for \critical" prob-
lems. One reason is that the current bound of the
coalition size (i.e., 5) is too small for di�cult problems,
in which coalitions tend to be very large. However, a
larger coalition consumes a great amount of constraint
checks and degrades the overall performance.

Discussions

One drawback of the distributed breakout algorithm
is that the completeness of the algorithm can not be
guaranteed since it may fall into an in�nite processing
loop. We say that an algorithm is complete if the al-
gorithm is guaranteed to �nd one solution eventually
when solutions exist; and when there exists no solu-
tion, the algorithm is guaranteed to �nd out the fact
that there exists no solution and terminate. The dis-
tributed breakout algorithm may fall into an in�nite
processing loop, so it can not guarantee that it �nds
a solution even if a solution does exist. On the other
hand, the asynchronous weak-commitment search al-
gorithm and the hill-climbing+coalition algorithm are
guaranteed to be complete.
One advantage of the distributed breakout algorithm

is that the termination detection procedure is embed-
ded in the algorithm, while the other two algorithms
must run separate procedures such as Chandy & Lam-
port (1985) for termination detection.
In Davenport et al. (1994), an algorithm similar to

the breakout algorithm is implemented by connection-
ist architecture. In this algorithm, concurrent changes
of neighboring clusters (which correspond to agents in
distributed CSPs) are not prohibited. Therefore, there
is a chance that the network of clusters will oscillate1.
Furthermore, a local-minimum is detected by the fact
the network as a whole is not changed in a certain time
period. Such a global control is di�cult to introduce
into the distributed CSPs.

Conclusions

In this paper, we developed a new algorithm for solv-
ing distributed CSPs called the distributed breakout
algorithm, which is inspired by the breakout algorithm
for solving centralized CSPs. In this algorithm, each
agent tries to minimize the number of constraint viola-
tions by exchanging the current value assignment and
the amount of its possible improvement among neigh-
boring agents. Instead of detecting a local-minimum,
each agent detects a quasi-local-minimum, and changes
the weights of constraint violations to escape from the
quasi-local-minimum. Experiment evaluations showed
that this algorithm is much more e�cient than existing
algorithms for particularly di�cult problem instances.
Our future work includes showing the e�ectiveness

of the distributed breakout algorithm in other example
problems and practical applications such as channel
allocation problems in mobile communication systems.

Acknowledgments

The initial idea of this research emerged during the
discussions at a workshop of Multiagent Research com-
munity in Kansai (MARK). The authors wish to thank

1If the communications among clusters is fast and each
cluster runs asynchronously, such an oscillation would not
be very frequent.

members of MARK for their discussions, and Kei-
hanna Interaction Plaza Inc. for supporting MARK.
We also thank Koichi Matsuda, Nobuyasu Osato, Seiji
Yamada, and Jun'ichi Toyoda for their support in this
work.

References

Chandy, K., and Lamport, L. 1985. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Trans. on Computer Systems 3(1):63{75.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. 1991.
Where the really hard problems are. In Proceedings

of the Twelfth International Joint Conference on Ar-

ti�cial Intelligence, 331{337.

Collin, Z.; Dechter, R.; and Katz, S. 1991. On the
feasibility of distributed constraint satisfaction. In
Proceedings of the Twelfth International Joint Con-

ference on Arti�cial Intelligence, 318{324.

Conry, S. E.; Kuwabara, K.; Lesser, V. R.; and Meyer,
R. A. 1991. Multistage negotiation for distributed
constraint satisfaction. IEEE Transactions on Sys-

tems, Man and Cybernetics 21(6):1462{1477.

Davenport, A.; Tsang, E.; Wang, C. J.; and Zhu,
K. 1994. Genet: A connectionist architecture for
solving constraint satisfaction problems by iterative
improvement. In Proceedings of the Twelfth National

Conference on Arti�cial Intelligence, 325{330.

Haralick, R., and Elliot, G. L. 1980. Increasing tree
search e�ciency for constraint satisfaction problems.
Arti�cial Intelligence 14:263{313.

Hirayama, K., and Toyoda, J. 1995. Forming coali-
tions for breaking deadlocks. In Proceedings of the

First international Conference on Multiagent Sys-

tems, 155{162.

Huhns, M. N., and Bridgeland, D. M. 1991. Multia-
gent truth maintenance. IEEE Transactions on Sys-

tems, Man and Cybernetics 21(6):1437{1445.

Mackworth, A. K. 1992. Constraint satisfaction. In
Shapiro, S. C., ed., Encyclopedia of Arti�cial Intel-

ligence. New York: Wiley-Interscience Publication.
285{293. second edition.

Mason, C., and Johnson, R. 1989. DATMS: A frame-
work for distributed assumption based reasoning. In
Gasser, L., and Huhns, M., eds., Distributed Arti�cial
Intelligence vol.II. Morgan Kaufmann. 293{318.

Minton, S.; Johnston, M. D.; Philips, A. B.; and
Laird, P. 1992. Minimizing con
icts: a heuristic re-
pair method for constraint satisfaction and scheduling
problems. Arti�cial Intelligence 58(1{3):161{205.

Morris, P. 1993. The breakout method for escaping
from local minima. In Proceedings of the Eleventh

National Conference on Arti�cial Intelligence, 40{45.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
new method for solving hard satis�ability problems.

In Proceedings of the Tenth National Conference on

Arti�cial Intelligence, 440{446.

Sycara, K. P.; Roth, S.; Sadeh, N.; and Fox,
M. 1991. Distributed constrained heuristic search.
IEEE Transactions on Systems, Man and Cybernet-

ics 21(6):1446{1461.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara,
K. 1992. Distributed constraint satisfaction for for-
malizing distributed problem solving. In Proceedings

of the Twelfth IEEE International Conference on Dis-

tributed Computing Systems, 614{621.

Yokoo, M. 1994. Weak-commitment search for solv-
ing constraint satisfaction problems. In Proceedings

of the Twelfth National Conference on Arti�cial In-

telligence, 313{318.

Yokoo, M. 1995. Asynchronous weak-commitment
search for solving distributed constraint satisfaction
problems. In Proceedings of the First International

Conference on Principles and Practice of Constraint

Programming, 88{102. Springer-Verlag.

Zhang, Y., and Mackworth, A. 1991. Parallel and dis-
tributed algorithms for �nite constraint satisfaction
problems. In Proceedings of the Third IEEE Sympo-

sium on Parallel and Distributed Processing, 394{397.

