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Abstract

We present resolvent-based learning as a new nogood
learning method for a distributed constraint satisfaction al-
gorithm. This method is based on a look-back technique in
constraint satisfaction algorithms and can efficiently make
effective nogoods. We combine the method with the asyn-
chronous weak-commitment search algorithm (AWC) and
evaluate the performance of the resultant algorithm on dis-
tributed 3-coloring problems and distributed 3SAT prob-
lems. As a result, we found that the resolvent-based learn-
ing works well compared to previous learning methods
for distributed constraint satisfaction algorithms. We also
found that the AWC with the resolvent-based learning is
able to find a solution with fewer cycles than the distributed
breakout algorithm, which was known to be the most effi-
cient algorithm (in terms of cycles) for solving distributed
constraint satisfaction problems.

1. Introduction

A distributed constraint satisfaction problem [23, 24] is
a constraint satisfaction problem (CSP) where variables and
constraints are distributed among multiple agents. Even
though the definition of a CSP is very simple, a surpris-
ingly wide variety of problems in artificial intelligence
can be formalized as CSPs. Similarly, various applica-
tion problems in Multiagent Systems (MAS) that are con-
cerned with finding a consistent combination of agent ac-
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tions (e.g., distributed resource allocation problems [7], dis-
tributed scheduling problems [20], distributed interpretation
tasks [16], and multi-agent truth maintenance tasks [14])
can be formalized as distributed CSPs. Therefore, we have
considered an efficient distributed algorithm for solving a
distributed CSP as an important infrastructure in MAS.

The author has proposed the asynchronous weak-
commitment search algorithm (AWC) [22, 24] for solving
a distributed CSP. All agents in this algorithm communicate
their tentative values to their variables, and concurrently and
asynchronously change the values to find consistent values.
In the AWC, when an agent receives the latest information
from another agent, it updates an agent view, a list of 3-
tuples: (agent’s id, variable’s id, variable’s value), and tries
to find a consistent value for its variable under the current
agent view. However, an agent meets a deadend under a
certain agent view. Namely, an agent fails to find a consis-
tent value for the variable because the agent view prohibits
all possible values.

In the AWC, an agent makes a nogood at a deadend and
sends it to relevant agents. A nogood is a subset of its
agent view under which no variable value is consistent. We
can look at such a nogood as a new constraint that was not
explicitly stated in the beginning. Thus, we refer to making
(and recording) nogoods as nogood learning or just learn-
ing. When recording all discovered nogoods, the AWC is
guaranteed to be complete, i.e., it finds a solution if one ex-
ists and insolubleness if none exists [22, 24].

In previous studies, some researchers presented the fol-
lowing learning methods for distributed constraint satisfac-
tion algorithms.

• In the asynchronous backtracking algorithm (ABT)
[23, 24], which is an ancestor of the AWC, an agent
uses an agent view itself as a nogood. The cost of this



method is virtually zero because it does not search in
the subset space of the agent view. However, the ob-
tained nogood is not so effective.

• Consequently, the AWC presented in [22, 24] pro-
vides a selective or no learning strategy where an agent
makes a limited number of nogoods.1 Unfortunately,
such a learning strategy makes the AWC incomplete.

• Mammen and Lesser use a method where an agent
identifies a minimum conflict set in an agent view and
uses it as a nogood [15]. A minimum conflict set is the
smallest subset of an agent view that causes a deadend.
This nogood can be the most effective one because it
may prune a large portion of the search space. How-
ever, the cost of identifying such a set is usually very
high.

Despite all these learning methods for distributed con-
straint satisfaction algorithms, none of the researchers have
focused on their effects and fully investigated this issue.
In this paper, we first provide resolvent-based learning as
a new nogood learning method for a distributed constraint
satisfaction algorithm, which is based on a look-back tech-
nique in the CSP literature [5, 10, 11, 19]. Then, we eval-
uate its performance through experiments on distributed 3-
coloring problems and distributed 3SAT problems.

This paper is organized as follows. We first present the
background of this work, which includes the definition of
a distributed CSP and the outline of the AWC (Section 2).
Next, we introduce the resolvent-based learning (Section 3),
and then experimentally evaluate the AWC combined with
the resolvent-based learning (Section 4). Finally, we con-
clude the work and discuss future directions (Section 5).

2. Background

2.1. Distributed Constraint Satisfaction Problem

A CSP consists of a set of variables and a set of nogoods
(constraints). A variable has a finite and discrete domain,
that is, a set of possible values for the variable. A nogood
is a set of values for some variables stating that the set of
values is prohibited for the variables. A solution to a CSP
is a set of values for all variables violating no nogood. The
goal of a CSP is to find a solution.

A distributed CSP is a CSP where variables and nogoods
are distributed among multiple agents. The problem con-
sists of:

1In the ABT, the only way for breaking a deadend is to make and send
a nogood. On the other hand, an agent can break a deadend in the AWC
by making and sending a nogood as well as by raising the priority of the
deadend variable. Thus, the algorithm never gets stuck at a deadend even
if an agent does not make a nogood.

• a set of agents, 1, 2, . . . , l

• a set of CSPs, P1, P2, . . . , Pl, such that Pi belongs to
an agent i.

We usually assume that a Pi includes all nogoods that are
relevant to variables in Pi and such nogoods include inter-
agent nogoods, which are defined over variables both in
agent i and in some other agents. A solution to a distributed
CSP is a set of solutions to all agents’ CSPs. The goal of a
distributed CSP is also to find a solution.

It is important that we do not confuse a distributed CSP
with a method for solving a CSP in a distributed/parallel
manner. If we want to solve a CSP in a distributed/parallel
manner, we can choose any distribution of problems. On the
other hand, since a distributed CSP is a problem for han-
dling a MAS application problem, where multiple agents
exist and have requirements for solving their local prob-
lems, the distribution of local problems is given in advance.

2.2. Asynchronous Weak-commitment Search Al-
gorithm

To solve distributed CSPs, we could consider a central-
ized algorithm, where agents run some leader election dis-
tributed algorithm to elect one leader; agents send their local
CSPs to the leader, and the leader finally solves the gathered
CSPs using some constraint satisfaction algorithm while
other agents are idle. If we were only interested in efficiency
and not in other aspects, such a centralized algorithm might
do well because it can make better use of the global knowl-
edge of the entire problem. However, considering other as-
pects like privacy or security for example, we believe such
an algorithm is not suitable for MAS application problems.
Therefore, we have developed a series of distributed algo-
rithms [13, 21, 22, 23, 24, 25, 26], where agents’ knowledge
of the entire problem stays limited throughout the execution
of the algorithms.

Among these algorithms, the AWC is basically designed
for a distributed CSP where an agent has a CSP with one
variable. In the AWC, a priority is defined for each vari-
able. An agent starts the algorithm by selecting some initial
value to its variable and sending the variable’s value and
the variable’s priority (initialized as zero) to relevant agents
with ok? messages.

When receiving an ok? message, an agent i with a vari-
able xi updates its agent view and tests whether some no-
good is violated. The agent only performs this test for a
nogood whose priority is higher than xi’s priority (we call
such a nogood a higher nogood). The priority of a nogood is
defined as the lowest priority among variables except xi in
the nogood. For example, suppose an agent 5 has a variable
x5 and a nogood: ((1, x1, red)(2, x2, green)(5, x5, yellow)).
Also suppose that the priority for x1, x2 and x5 are 2, 1 and



0, respectively. In this case, the agent 5 has to test the no-
good because the priority of the nogood (1) is higher than
that of x5 (0). All ties in priorities are broken due to the
alphabetical order of variables’ ids.

According to the test results, an agent i does the follow-
ing.

• When no higher nogood is violated, an agent does
nothing.

• When some higher nogoods are violated and the viola-
tion can be repaired by changing xi’s value, an agent
changes the value and sends ok? messages. If there are
multiple candidates for a new value, the agent selects
the value causing the minimum violation on lower no-
goods. The lower nogood is a nogood whose priority
is lower than xi’s priority.

• When some higher nogoods are violated and the viola-
tion cannot be repaired, an agent makes a new nogood
out of its agent view and sends it with a nogood mes-
sage to every agent that has the variable in the nogood.
Then, the agent raises the priority of xi, changes xi’s
value to the one causing the minimum violation on all
its nogoods, and sends ok? messages. If the new no-
good is the same as the previously generated nogood,
the agent does nothing. This step is required to ensure
the completeness of the algorithm [22, 24].

When receiving a nogood message, an agent appends the
nogood to its nogood set and performs the nogood viola-
tion test. If the new nogood includes an unknown variable,
the agent has to request the corresponding agent to send its
value.

3. Nogood Learning

Constraint satisfaction algorithms can be enhanced by
look-back techniques, which exploit information about
search that has already been done [2, 3, 5, 8, 9, 10, 11, 19].
This paper provides a new learning method for a distributed
constraint satisfaction algorithm that is based on a look-
back technique in the CSP literature.

3.1. Resolvent-based Learning

We use a similar method to that presented in [5, 10, 11,
19]. This method can be summarized as follows: for each
possible value for a deadend variable, select one nogood
that prohibits the value, then make a new nogood out of the
aggregation of these selected nogoods. The nogood made in
this way is virtually equivalent to a resolvent in the propo-
sitional logic, so we refer to this method as resolvent-based
learning.
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Figure 1. (A part of) Distributed 3-coloring
problem

Suppose an agent i has a variable xi with a domain Di,
and every possible value in Di violates some higher no-
goods under the current agent view. An agent i first selects
one nogood for each value d ∈ Di as follows.

1. An agent identifies higher nogoods that are violated
under the current agent view and xi = d.

2. Next, it selects the smallest nogood among these no-
goods. Ties are broken by selecting the one with the
highest priority.

Then, the agent makes a new nogood by removing all of
the elements including xi from the union of these selected
nogoods.

An agent selects the smallest nogood because we want
to make the resultant nogood as small as possible. Fur-
thermore, an agent selects the highest nogood when there
are ties for the smallest nogood because such the highest
nogood includes variables with high priorities. A highly-
prioritized variable generally makes a strong commitment
to the current value, so we should notify the agent with such
a variable as early as possible if such a value is wrong.

3.2. Example

We illustrate the resolvent-based learning using Figure 1.
Figure 1 shows a part of a distributed 3-coloring problem.
In this problem, an agent i is responsible for one node xi

and the agent tries to paint the node red, yellow, or green,
so that each adjacent pair of nodes has a different color. We
also show a priority for a node (variable) in parentheses.

In this figure, agent 5 is going to select a color
for node x5. Suppose other variables, which are
not shown in this figure, have lower priorities than
x5. Also suppose that agent 5 has the follow-
ing nogoods that come from the arcs in the figure:
{((x1, r)(x5, r)), ((x1, y)(x5, y)), ((x1, g)(x5, g)), . . . ,
((x4, g)(x5, g))}, and the nogood received from some



agent: ((x3, g)(x4, r)(x5, y)) (an agent’s id is omitted in a
nogood). We can see that there is no consistent value for
x5 in this situation. In the resolvent-based learning, agent 5
makes a new nogood in the following way.

The value ’r’ to x5 will violate ((x1, r)(x5, r)) and
((x4, r)(x5, r)). Both have the same size, but their pri-
orities are 5 and 2, respectively. Thus, the former no-
good is selected for ’r’. Next, the value ’y’ will violate
((x2, y)(x5, y)) and ((x3, g)(x4, r)(x5, y)). The former no-
good is selected for ’y’ because it is smaller than the latter.
Finally, the value ’g’ will violate ((x3, g)(x5, g)) alone, so
it is selected for ’g’. Agent 5 makes ((x1, r)(x2, y)(x3, g))
as a new nogood from these selected nogoods.

4. Evaluation

We combine the resolvent-based learning with the AWC
and evaluate the performance of the resultant algorithm
through experiments on distributed 3-coloring problems
and distributed 3SAT problems.

A distributed 3-coloring problem is a 3-coloring prob-
lem where n nodes (variables) and m arcs (constraints) are
distributed among multiple agents. We generate a solvable
problem instance with m = 2.7n using the method in [17],
and distribute one variable and its relevant nogoods to one
agent. This setting is known to be hard in 3-coloring prob-
lems [6].2 We generate 10 instances with this method for
each n ∈ {60, 90, 120, 150}. For each instance, we ran-
domly generate 10 sets of initial values for the variables.
Thus, we make 100 trials for each n.

A distributed 3SAT is a 3SAT where n Boolean vari-
ables and m clauses are distributed among multiple agents.
We use solvable 3SAT instances of the AIM problems [4],
which are generated by 3SAT-GEN and 3ONESAT-GEN,
and distribute one Boolean variable and its relevant clauses
to one agent.

The 3SAT-GEN generates satisfiable 3SAT instances
with a specified clause/variable ratio [4]. With this gen-
erator, we generate 25 instances with m = 4.3n for each
n ∈ {50, 100, 150}. These setting is hard enough accord-
ing to experimental results in [4]. For each instance, we ran-
domly generate 4 sets of initial values for variables. Thus,
100 trials are made for each n.

On the other hand, the 3ONESAT-GEN generates satis-
fiable 3SAT instances that have exactly one solution with
a specified clause/variable ratio [4]. We use four instances
with m = 3.4n for each n ∈ {50, 100, 200}, which were

2It is not clear for now where the hard instances lie for distributed 3-
coloring problems (and also for distributed 3SAT problems). However,
we can expect that an instance generated in this way, i.e., making a hard
(centralized) instance and then distributing variables and nogoods, will be
hard enough when every agent has one variable.

got from the DIMACS benchmark site.3 These instances
are shown to be very hard for non-systematic search in [19].
Then we randomly generate 25 sets of initial values for vari-
ables in each instance. Thus, we also make 100 trials for
each n.

Since the distributed algorithms used in these experi-
ments are designed for a fully asynchronous distributed sys-
tem, we can implement the algorithms on any distributed
systems including a fully asynchronous distributed system
itself. However, in our experiments, we assume a syn-
chronous distributed system for simplicity and implement
the algorithms on a simulator of such a distributed system.
A synchronous distributed system is one of possible dis-
tributed systems, where all processes (agents) do their cy-
cles synchronously. One cycle consists of activities so that
all agents read incoming messages, do their local computa-
tion, and send messages to relevant agents.4

For each trial, we measure cycle (cycles consumed until
a solution is found) and maxcck (sum of the maximal num-
ber of nogood checks performed by agents at each cycle)
on the simulator. Broadly speaking, the former represents
the communication cost of an algorithm and the latter rep-
resents the computational cost of an algorithm. We evaluate
the performance of an algorithm with the averages of these
measures over 100 trials for each n. We set the upper bound
of cycles to 10000 and cut off a trial when it goes beyond
this limit. If this happens, we use the data at that time.

4.1. Comparison with Other Learning Methods

We compare the resolvent-based learning with the fol-
lowing learning methods.

Mcs-based learning This method uses a minimum conflict
set (mcs) as a new nogood like the method in [15].
Such a set is searched in this way: make a nogood with
the resolvent-based learning and test whether a subset
of the nogood is a conflict set or not from larger subsets
to smaller subsets.

No learning In this method, an agent doesn’t make a no-
good when meeting deadends. This is also used in the
AWC in [22, 24].

We combined the methods with the AWC and conducted
experiments. The results are shown in Table 1-3. Note that
’%’ in the tables indicates the percentage of trials finished
within the upper bound.

We first compare the resolvent-based learning (Rslv) and
the mcs-based learning (Mcs). For distributed 3-coloring

3ftp://dimacs.rutgers.edu/pub/challenge/
satisfiability/benchmarks/cnf/

4A computational load of one cycle varies according to algorithms. In
addition, it varies during one run of some algorithms.



n learn cycle maxcck %
60 Rslv 83.2 58084.4 100

Mcs 88.8 119019.2 100
No 458.2 52601.6 100

90 Rslv 125.4 135569.8 100
Mcs 133.2 275099.1 100
No 2923.9 358486.1 91

120 Rslv 178.5 263115.1 100
Mcs 172.3 494266.7 100
No 6121.9 793280.3 60

150 Rslv 173.9 273823.3 100
Mcs 177.1 512657.0 100
No 8800.5 1188345.1 21

Table 1. Comparison with other learning
methods on distributed 3-coloring problems

n learn cycle maxcck %
50 Rslv 125.0 76256.2 100

Mcs 120.7 180122.0 100
No 360.0 15959.3 100

100 Rslv 215.3 233003.8 100
Mcs 238.9 830660.5 100
No 3949.8 188182.3 80

150 Rslv 275.3 399146.6 100
Mcs 286.0 1146204.1 100
No 7793.8 382634.7 41

Table 2. Comparison with other learning
methods on distributed 3SAT problems by
3SAT-GEN

n learn cycle maxcck %
50 Rslv 140.4 64011.0 100

Mcs 120.3 90813.5 100
No 1378.1 47784.3 62

100 Rslv 155.4 81086.1 100
Mcs 138.2 132518.7 100
No 9179.5 340172.3 14

200 Rslv 263.8 294334.5 100
Mcs 237.4 544732.6 100
No - - 0

Table 3. Comparison with other learning
methods on distributed 3SAT problems by
3ONESAT-GEN

problems and distributed 3SAT problems by 3SAT-GEN,
both methods are competitive for cycle, but the resolvent-
based learning does very well for maxcck in all cases. As a
result, the resolvent-based learning can make a good-quality
nogood at a reduced computational cost for these prob-
lems. On the other hand, for distributed 3SAT problems
by 3ONESAT-GEN, while the resolvent-based learning is
always better for maxcck, it is slightly worse for cycle (10-
15% larger). An instance of the problem has a relatively
small number of clauses (m = 3.4n), but the clauses are
selected to have only one solution. We expect that such
an instance implicitly has many small-sized nogoods be-
cause all but one complete sets of values to variables are
rejected by the small number of explicit clauses. With the
mcs-based learning, small-sized nogoods are usually found
at an early cycle and hence the communication cost is re-
duced. However, finding such nogoods by the mcs-based
learning is computationally expensive.

Next we compare the resolvent-based learning (Rslv)
with the no learning (No). The resolvent-based learning
(and the mcs-based learning) overwhelmingly outperform
the no learning for cycle. This tells us that the nogood learn-
ing has a great impact on the AWC’s communication cost.
To understand the reason for this, we measured the total
number of redundant nogoods generated with the AWC us-
ing the following two methods.

Rslv/rec An agent makes a nogood with the resolvent-
based learning, and other agents record the nogood.

Rslv/norec An agent makes a nogood with the resolvent-
based learning, but no other agent records it.

The Rslv/rec is equivalent to the previously described
resolvent-based learning. In the AWC with this method, the
redundant generation of nogoods can still occur due to the
concurrent activities of agents.

The results are shown in Table 4. We can see that an
agent repeatedly makes the same nogoods if the previously
generated nogoods are not recorded by other agents. How-
ever, such redundant generation dramatically declines when
nogoods are recorded. Thus, we conjecture that learning
helps agents adequately decide values to variables and thus
reduces the communication cost.

For maxcck, on the other hand, we can see that the no
learning is sometimes better than the resolvent-based learn-
ing. Since the no learning doesn’t learn nogoods, its com-
putational cost at each cycle is relatively low. However, if
the size of problems increases, the no learning spends many
cycles and consequently the maxcck of the no learning be-
comes larger than that of the resolvent-based learning.



problem n Rslv/rec Rslv/norec
d3c 60 69.1 1612.3

90 208.1 24399.3
120 432.5 69784.6
150 565.3 135502.5

d3s 50 195.3 1105.3
100 908.0 42998.7
150 1947.2 133162.6

d3s1 50 276.6 5523.3
100 651.9 86595.8
200 2683.4 190501.8

Table 4. Total number of redundant nogood
generation (averaged over 100 trials) for
distributed 3-coloring problems (d3c), dis-
tributed 3SAT problems by 3SAT-GEN (d3s)
and distributed 3SAT problems by 3ONESAT-
GEN (d3s1).

4.2. Size-bounded Learning

There is one drawback to the look-back techniques for
constraint satisfaction algorithms. For a certain problem in-
stance, a great number of nogoods can be produced, so the
computational cost of checking nogoods may increase. We
call such a problem nogood-explosion.

An agent in the AWC, on the other hand, only handles
nogoods that are relevant to its variable, so the nogood-
explosion for each agent is not so serious.5 However, we
cannot say that the AWC with nogood learning is com-
pletely free of the nogood-explosion.

In the CSP literature, two approaches, size-bounded
learning [9, 10] and relevance-bounded learning [2] have
been proposed to handle the nogood-explosion. The size-
bounded learning is a simple strategy that bounds the size of
the recorded nogood. The relevance-bounded learning, on
the other hand, records nogoods of arbitrary size, but only
maintains i-relevant nogoods, i.e., nogoods that differ from
the working assignment in at most i variable-value pairs.

The relevance-bounded type of strategy cannot be ap-
plied to our learning method because the AWC is basi-
cally a non-systematic algorithm. Thus we consider that the
size-bounded type of strategy is promising for our learn-
ing method. We test the AWC combined with size-bounded
resolvent-based learning. KthRslv refers to the resolvent-
based learning where agents only record the nogoods of
size k or less.6 Table 5-7 show the results for distributed

5The total number of nogoods over agents can be large because an agent
sends a generated nogood to multiple agents.

6The size-bounded learning makes the AWC incomplete because it
does not record all nogoods.

n learn cycle maxcck %
60 Rslv 83.2 58084.4 100

3rdRslv 85.6 40594.2 100
4thRslv 90.6 66622.4 100

90 Rslv 125.4 135569.8 100
3rdRslv 126.4 76923.5 100
4thRslv 136.0 151973.7 100

120 Rslv 178.5 263115.1 100
3rdRslv 171.8 124226.1 100
4thRslv 167.3 217033.4 100

150 Rslv 173.9 273823.3 100
3rdRslv 186.1 153139.2 100
4thRslv 180.4 249459.3 100

Table 5. AWC with size-bounded resolvent-
based learning on distributed 3-coloring
problems

n learn cycle maxcck %
50 Rslv 125.0 76256.2 100

4thRslv 124.7 37717.9 100
5thRslv 113.0 49770.3 100

100 Rslv 215.3 233003.8 100
4thRslv 387.9 311048.8 100
5thRslv 216.0 171115.7 100

150 Rslv 275.3 399146.6 100
4thRslv 595.7 522191.2 100
5thRslv 255.5 246534.5 100

Table 6. AWC with size-bounded resolvent-
based learning on distributed 3SAT problems
by 3SAT-GEN

3-coloring problems and distributed 3SAT problems.

For distributed 3-coloring problems, the 3rdRslv is com-
petitive with the Rslv (the unrestricted resolvent-based
learning) for cycle, but it performs better than the Rslv for
maxcck. For distributed 3SAT problems by 3SAT-GEN, the
4thRslv is worse than the Rslv for both cycle and maxcck
in instances with a large n. We conjecture that the instances
of distributed 3SAT problems with a large n are so hard that
we need to record larger nogoods. We should notice that the
5thRslv works well in such hard instances. For distributed
3SAT problems by 3ONESAT-GEN, the 4thRslv performs
better for maxcck. Since the problem implicitly has many
small nogoods, a large nogood is likely to become redun-
dant after a smaller nogood is discovered. We can say that
such redundant nogoods increase maxcck in the Rslv and
the 5thRslv.



n learn cycle maxcck %
50 Rslv 140.4 64011.0 100

4thRslv 130.8 38892.5 100
5thRslv 128.9 46611.6 100

100 Rslv 155.4 81086.1 100
4thRslv 167.8 68777.9 100
5thRslv 162.8 84404.4 100

200 Rslv 263.8 294334.5 100
4thRslv 265.7 181491.7 100
5thRslv 272.6 290999.9 100

Table 7. AWC with size-bounded resolvent-
based learning on distributed 3SAT problems
by 3ONESAT-GEN

From these results, we can say that the optimal setting
for k depends on problems. Since we do not have a way to
determine it optimally for now, it should be set empirically.
Generally speaking, making k smaller leads to lightening a
computational load on agents in a cycle, but that may re-
quire a lot of cycles especially in hard problem instances.
On the other hand, making k larger may burden agents with
a relatively heavy computational load in a cycle, but that
enables agents to solve hard problem instances with fewer
cycles.

4.3. Comparison with Distributed Breakout Algo-
rithm

The authors have presented the distributed breakout al-
gorithm (DB) for solving distributed CSPs and experimen-
tal results that show the DB is very efficient (in terms of
cycles) especially for difficult problem instances with solu-
tions [25].

This algorithm is characterized by concurrent hill-
climbing while excluding neighbors’ simultaneous value
changes [12] and the breakout strategy [18] as a method for
escaping from quasi-local-minima (a weak notion of a real
local-minimum). In the DB, each agent first initializes its
variable value arbitrarily, sends its value to neighbors with
ok? messages, and then repeats the following:

• when receiving ok? messages from all neighbors, an
agent measures the cost of the current variable value
as a weighted sum of violated constraints and its pos-
sible maximal improvement (called improve). Note
that a weight, a positive integer, is defined for each
constraint. After this calculation, an agent sends these
results to all neighbors with improve messages.

• when receiving improve messages from all neighbors,
an agent compares each of them with its own improve,

and transfers the right to change its variable value by
skipping its next change if the neighbor’s improve
is greater than its own improve or does not transfer
this right if it’s smaller. Ties are broken by compar-
ing agent identifiers. Only the winners for the right to
change actually change their variable values, and then
all agents send the current variable values to neighbors
with ok? messages.

This repeated process sometimes leads to a solution to a dis-
tributed CSP. However, in many cases some agent falls into
a quasi-local-minimum, where it has at least one constraint
violation and has no way to improve the cost. In that case,
an agent escapes from a quasi-local-minimum by the break-
out strategy, i.e., increasing weights of violated constraints
at the quasi-local-minimum.

We compare the DB and the AWC combined with the
most effective resolvent-based learning (3rdRslv for dis-
tributed 3-coloring problems, 5thRslv for distributed 3SAT
problems by 3SAT-GEN, and 4thRslv for distributed 3SAT
problems by 3ONESAT-GEN). Table 8-10 show the re-
sults.7

The AWC combined with the size-bounded resolvent-
based learning is worse for maxcck in all cases. Since
the DB does not learn nogoods, the number of nogoods
in an agent never increases. This means that the load of
local computation for the DB is very small compared to
the AWC combined with the size-bounded resolvent-based
learning. On the other hand, the AWC combined with the
size-bounded resolvent-based learning is better for cycle in
all cases. This is because agents in the DB use special mes-
sages (improve messages) to mutually exclude their value
changes, and thus extra cycles are spent.

An answer to the question, which algorithm is effi-
cient?, depends on a characteristic of the distributed sys-
tem, the ratio of the communication delay to the compu-
tational time-unit. Figure 2 shows the rough estimation
of the efficiency of both algorithms for n = 50 of dis-
tributed 3SAT problems by 3ONESAT-GEN. We assume
that one nogood check amounts to one computational time-
unit and a communication delay between cycles amounts to
the designated number of time-unit. The figure illustrates
total number of time-unit vs. communication delay when
each algorithm consumes cycle and maxcck shown in Ta-
ble 10. For these problems, when a communication delay
is more than around 50 time-unit (i.e., 50 nogood checks),
the AWC+4thRslv seems to become efficient. However, the
point at which the AWC+kthRslv becomes efficient varies
according to the problems. For example, this point is around

7The DB in this work is slightly different from [25]. The DB requires a
weight of a constraint, which reflects a cost violating the constraint. When
solving a distributed graph-coloring problem, the DB in [25] assigns a
weight to a pair of variables. The DB in this work assigns it to a nogood.
Our experiments showed that the latter is better.



n alg cycle maxcck %
60 AWC+3rdRslv 85.6 40594.2 100

DB 164.9 7730.0 100
90 AWC+3rdRslv 126.4 76923.5 100

DB 282.1 14228.5 100
120 AWC+3rdRslv 171.8 124226.1 100

DB 522.4 26931.5 100
150 AWC+3rdRslv 186.1 153139.2 100

DB 523.7 29207.0 100

Table 8. Comparison with distributed break-
out algorithm on distributed 3-coloring prob-
lems

n alg cycle maxcck %
50 AWC+5thRslv 113.0 49770.3 100

DB 322.6 6461.3 100
100 AWC+5thRslv 216.0 171115.7 100

DB 847.2 19870.8 100
150 AWC+5thRslv 255.5 246534.5 100

DB 1257.2 31717.2 100

Table 9. Comparison with distributed break-
out algorithm on distributed 3SAT problems
by 3SAT-GEN

n alg cycle maxcck %
50 AWC+4thRslv 130.8 38892.5 100

DB 690.1 11691.1 100
100 AWC+4thRslv 167.8 68777.9 100

DB 1917.4 38210.5 97
200 AWC+4thRslv 265.7 181491.7 100

DB 5246.5 117277.4 69

Table 10. Comparison with distributed break-
out algorithm on distributed 3SAT problems
by 3ONESAT-GEN
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Figure 2. Estimated efficiency on n = 50 of
distributed 3SAT problems by 3ONESAT-GEN
(Note: one nogood check for one time-unit)

210 time-unit for distributed 3SAT problems by 3SAT-GEN
with n = 150 and around 370 time-unit for distributed 3-
coloring problems with n = 150.

5. Conclusions and Future Work

We have presented the resolvent-based learning, which
is based on a look-back technique in the CSP literature,
and combined it with the asynchronous weak-commitment
search algorithm. Such a combination is promising because
our experimental results show that:

• The learning methods (both the mcs- and resolvent-
based learning) dramatically reduce cycles consumed
to find a solution to a distributed CSP.

• The resolvent-based learning can produce an effective
nogood with fewer nogood checks.

• By introducing the size-bounded strategy, the number
of nogood checks can be reduced without having a bad
effect on cycle.

• The AWC with the resolvent-based learning can be
more efficient than the DB when the communication
delay is large.

Finally, we wish to point out some matters for further in-
vestigation. Our discussion was made on one specific class
of distributed CSPs, where each agent has one variable. Al-
though all distributed CSPs can be converted into this class
in principle, such conversion is sometimes unreasonable in
real-life problems [1, 26]. The authors have proposed a few



extended versions of the AWC to handle a problem with
multi-variables per agent [26]. Perhaps, it is easy to intro-
duce our learning method into these algorithms as well. We
may be able to develop the algorithms and do further anal-
yses.

Experimental analyses in this work are done on a syn-
chronous distributed system for simplicity. As mentioned
before, our distributed constraint satisfaction algorithms are
designed for a fully asynchronous distributed system, and
thereby can work on any type of distributed systems. We
should analyze the performance of our algorithm on other
types of distributed systems.
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