
The Distributed Breakout Algorithms �

Katsutoshi Hirayama a,∗ Makoto Yokoo b

aFaculty of Maritime Sciences, Kobe University,
5-1-1 Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, JAPAN

bFaculty of Information Science and Electrical Engineering, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, JAPAN

Abstract

We present a new series of distributed constraint satisfaction algorithms, the dis-
tributed breakout algorithms, which is inspired by local search algorithms for solving
the constraint satisfaction problem (CSP). The basic idea of these algorithms is
for agents to repeatedly improve their tentative and flawed sets of assignments for
variables simultaneously while communicating such tentative sets with each other
until finding a solution to an instance of the distributed constraint satisfaction
problem (DisCSP). We introduce four implementations of the distributed breakout
algorithms: Single-DB, Multi-DB, Multi-DB+, and Multi-DB++. Single-DB
is a distributed breakout algorithm for solving the DisCSP, where each agent has
a single local variable and its related constraints. Multi-DB, on the other hand,
is another distributed breakout algorithm for solving the distributed SAT (Dis-
SAT) problem, where each agent has multiple local variables and their related
clauses. Multi-DB+ and Multi-DB++ are stochastic variations of Multi-DB.
In Multi-DB+, we introduce a technique called random break into Multi-DB; in
Multi-DB++, we introduce a technique called random walk into Multi-DB+. We
conducted experiments to compare these algorithms with the asynchronous type of
distributed constraint satisfaction algorithm. Through these experiments, we found
that Single-DB, Multi-DB, and Multi-DB+ scale up better than the asyn-
chronous type of distributed constraint satisfaction algorithms, but they sometimes
show very poor performance. On the other hand, we also found that Multi-DB++,
which uses random walk, provides a clear performance improvement.

Key words: distributed constraint satisfaction, local search, SAT, coordination
PACS:

Preprint submitted to Elsevier Science 13 December 2004

1 Introduction

The distributed constraint satisfaction problem (DisCSP) [23,25] is a constraint
satisfaction problem (CSP) in which variables and constraints are distributed
among multiple agents. Even though the definition of CSP is very simple, a
surprisingly wide variety of problems in computer science can be formalized as
CSPs. Similarly, various application problems in Multi-Agent Systems (MAS)
that are concerned with finding a consistent combination of agent actions
(e.g., the distributed resource allocation problem [4], the distributed schedul-
ing problem [21], the distributed interpretation task [14], and the multi-agent
truth maintenance task [11]) can be formalized as DisCSPs. Therefore, we
have considered an efficient distributed algorithm for solving the DisCSP as
an important infrastructure in MAS.

The authors have previously presented two distributed algorithms for solv-
ing the DisCSP, called the asynchronous backtracking algorithm (ABT) and
the asynchronous weak-commitment search algorithm (AWC) [25]. These al-
gorithms are similar in their basic operations: in both algorithms, a priority
order is defined among agents, and agents exchange their current assignments
for variables and change their assignments concurrently and asynchronously
so that the assignments are consistent with those of higher-priority agents.
A major difference between ABT and AWC is the operation at dead-ends,
that is, the operation invoked when an agent cannot find a consistent assign-
ment for its variable. In ABT, an agent backtracks at dead-ends by sending
a nogood, a combination of value assignments that cannot be a part of a so-
lution, to a higher-priority agent to request that it change an assignment. On
the other hand, in AWC, an agent uses a technique called weak-commitment,
where an agent gives up the attempt to satisfy its constraints and delegates
them to other agents by raising its own priority. While doing this, an agent can
send nogoods to other agents so that they will not take the value assignments
specified in the nogoods. Experimental evaluation shows that AWC greatly
outperforms ABT in finding solutions to some hard DisCSP instances [25].

In ABT and AWC, nogood learning plays an important role in the search per-
formance. A nogood learning technique specifies how an agent generates/stores
nogoods. By making each agent generate/store all nogoods, both ABT and
AWC are guaranteed to be complete, and, moreover, the communication cost
of AWC can be dramatically reduced [8]. However, especially when solving

� This is the author version of the final article published in Artificial Intelligence,
Volume 161 Issues 1-2, pp.89–115 (Elsevier) 2005. The web site of this journal can
be reached from http://www.elsevier.com/.∗ Corresponding author

Email addresses: hirayama@maritime.kobe-u.ac.jp (Katsutoshi Hirayama),
yokoo@is.kyushu-u.ac.jp (Makoto Yokoo).

2

critically hard DisCSP instances, both algorithms are likely to produce a huge
number of nogoods, and some agents may hence consume a lot of memory to
store these nogoods as well as a lot of computation to check them. This prob-
lem can be serious, especially when an agent has to solve a DisCSP instance
when it’s permitted to use only a limited amount of memory.

In this paper, we introduce a new series of distributed constraint satisfaction
algorithms called the distributed breakout algorithms. Since these algorithms
do not have to rely on nogood learning, they can operate in a situation where
each agent has a limited amount of memory. These algorithms are inspired by
local search algorithms for the (centralized) CSP, such as the heuristic repair
method [15], the breakout algorithm [16], and GSAT [17]. The basic idea of the
distributed breakout algorithms is that the agents repeatedly improve their
tentative and flawed sets of assignments for variables simultaneously while
communicating such tentative sets with each other until finding a solution
to a DisCSP instance. To realize this, each agent first sets an initial set of
assignments for its variables and exchanges the set with its neighbors, then
alternates as follows until finding a solution to a DisCSP instance.

(1) Each agent searches for the candidate for the next set of assignments that
would reduce a cost and exchanges information on the candidate with its
neighbors to resolve potential conflicts.

(2) Each agent sets the candidate as a new set of assignments if the candidate
still remains valid after the conflict resolution process. Then, it exchanges
a set of assignments with its neighbors.

In this procedure, the agents can sometimes be trapped in a local minimum,
where no agent can reduce a cost while some agent has a flawed set of as-
signments, on the way to a solution to a DisCSP instance. To escape from
such local minima, the procedure adopts a simple escaping technique called
breakout at quasi-local minima.

We introduce four implementations of the distributed breakout algorithms:
Single-DB [24], Multi-DB [9], Multi-DB+, and Multi-DB++. Single-
DB is a distributed breakout algorithm that is basically designed for the
DisCSP where each agent has a single local variable and its related constraints.
Also, it uses a simple and deterministic conflict resolution technique when se-
lecting valid candidates for the next set of assignments for variables. Multi-
DB is a distributed breakout algorithm that solves the distributed SAT (Dis-
SAT) problem where each agent has multiple local variables and their related
clauses. Moreover, it uses a sophisticated and deterministic conflict resolu-
tion technique that allows agents to perform more simultaneous assignment
changes leading to a rapid cost decrease. Both Multi-DB+ and Multi-DB++

are extensions of Multi-DB, and they both basically follow the same pro-
cedure as Multi-DB does, but they are extended to behave in a stochastic

3

manner. More specifically, we devise two stochastic techniques called random
break and random walk ; we introduce random break into Multi-DB and
call the resultant algorithm Multi-DB+ and random walk into Multi-DB+,
calling the resultant algorithm Multi-DB++.

The remaining parts of this paper are organized as follows. First, in Section
2, we give the background of this work, including the definition of DisCSP
and the outline of a local search algorithm for the CSP. Next, after describing
the generic distributed breakout algorithm in Section 3, we present a series of
implementations: Single-DB in Section 4 and Multi-DB and its stochastic
variations in Section 5. We then experimentally evaluate these implementa-
tions in Section 6 and finally conclude this work in Section 7.

2 Background

In this section, as background of this work, we first introduce the definition of
DisCSP with two illustrative examples: the distributed graph coloring problem
and the DisSAT problem, then give the outline of a local search algorithm for
the CSP.

2.1 DisCSP

The CSP consists of n variables x1, x2, . . . , xn, whose values are taken from fi-
nite and discrete domains D1, D2, . . . , Dn, respectively, and a set of constraints
on their values. A constraint can be described as a nogood, i.e., a set of values
for some variables that are prohibited for the variables. A nogood is violated
when its corresponding variables actually take the values appearing in the no-
good. A solution to the CSP is an assignment of values for all of the variables
whereby no nogood is violated. The problem of finding a solution to the CSP
is known to be NP-complete.

The DisCSP is a CSP in which variables and constraints are distributed among
multiple agents. It consists of the following.

• a set of agents, 1, 2, . . . , k
• a set of CSPs, P1, P2, . . . , Pk, such that Pi belongs to agent i and consists of
· a set of local variables whose values are controlled by agent i
· a set of intra-agent constraints, each of which is defined over agent i’s local

variables
· a set of inter-agent constraints, each of which is defined over agent i’s local

variables and other agents’ local variables

4

n1 n2

n3

n6

n4 n5

1

2
3

l12

l13

l34

l26

l45

l46 l56

Fig. 1. Distributed graph coloring problem

A solution to the DisCSP is a set of solutions to all of the agents’ CSPs, i.e.,
a state where all of the agents find sets of assignments of values for their local
variables whereby no intra/inter-agent constraint is violated. Obviously, the
problem of finding a solution to the DisCSP is NP-complete.

Fig. 1 illustrates an example of a DisCSP, the distributed graph coloring prob-
lem. The graph coloring problem is a problem that requires finding a color
(among available colors) for each node of a given graph such that no adjacent
pair of nodes has the same color. By considering a node as a variable and
a link as a constraint, the graph coloring problem can be mapped into the
CSP. The distributed graph coloring problem involves nodes and links that
are distributed among agents such that each agent has some nodes and all of
the links that are connected to the nodes. In Fig. 1, there are three agents, 1,
2, 3, each of which has nodes in the corresponding ellipse and links that are
connected to the nodes. For example, agent 1 has the nodes n1 and n2 and the
links l12, l13, and l26. In other words, agent 1 has a CSP instance consisting of
local variables derived from n1 and n2, intra-agent constraints derived from
l12, and inter-agent constraints derived from l13 and l26.

Next, we introduce the DisSAT problem as another example of the DisCSP.
The propositional satisfiability (SAT) problem is the problem of finding a
model for a propositional formula, i.e., a truth assignment for variables in
a formula that makes the formula true. A formula is typically described in
Conjunctive Normal Form (CNF), and we hence call it a CNF formula. A CNF
formula consists of a set of clauses, where a clause is a disjunction of a number
of literals and a literal is a variable or its negation. Given a CNF formula
consisting of a set of clauses C1, C2, . . . , Cm on the variables x1, x2, . . . , xn, the
problem is to determine whether the formula C1 ∧C2 ∧ . . .∧Cm is satisfiable.
This decision problem was one of the first problems shown to be NP-complete.
The SAT problem has attracted considerable attention recently in the AI
community since many AI tasks, such as planning [12], theorem proving, and
etc., can be encoded into it.

5

agent 1 agent 2

(x1, x2) = (,) (x3, x4) = (,)

C1: x1 ∨ x2

C2: ¬x1 ∨ ¬x2

C3: x3 ∨ x4

C4: ¬x3 ∨ ¬x4

C5: ¬x1 ∨ ¬x3C5: ¬x1 ∨ ¬x3

C6: ¬x2 ∨ ¬x4C6: ¬x2 ∨ ¬x4

Fig. 2. DisSAT problem

The DisSAT problem is the problem of finding models for formulae of multiple
agents. Each agent in the DisSAT problem has its own formula and tries to find
a model for it. Each agent’s formula is defined on its local variables and some
other agents’ local variables and consists of a number of intra-agent clauses
and a number of inter-agent clauses. An intra-agent clause is defined on only
local variables, while an inter-agent clause is defined on both local variables
and non-local variables. Fig. 2 illustrates a DisSAT problem instance, where
there are two agents each having its own formula. Agent 1, for example, has the
local variables x1, x2 and the clauses C1, C2, C5, C6. Since the clauses C1, C2 are
defined on only agent 1’s local variables, they are intra-agent clauses. On the
other hand, since the clauses C5, C6 include not only agent 1’s local variables
x1, x2 but also agent 2’s local variables x3, x4, they are inter-agent clauses.

2.2 Local search algorithm for the CSP

In the early 1990s, several researchers demonstrated that local search algo-
rithms could successfully solve very large instances of various NP-complete
problems that had been considered computationally expensive for traditional
complete search algorithms [7,15,17]. Although complete search algorithms
have recently extended their reach and some of them can perform as well
or better than local search algorithms [2], local search algorithms have still
attracted plenty of attention because they are at least comparable to state-of-
the-art complete search algorithms.

Local search algorithms for the CSP basically follow a similar procedure: an al-
gorithm starts with an initial flawed “solution” and then repeats making local
changes that reduce the cost, the total number of constraint violations, until
finding a solution. However, one drawback of these algorithms is the possibility
of getting stuck at a locally optimal point, a local minimum, where no local
change can reduce the cost while there still exists at least one constraint vio-
lation. Various techniques have been proposed for escaping from local minima
[7,16–19]. Breakout is one such technique that has been proposed by Morris
[16]. The characteristics of the breakout algorithm, i.e., the local search algo-
rithm that incorporates the breakout technique, are summarized as follows.

• A weight is associated with each constraint. For a state (a complete set of

6

assignments for the variables), a cost is measured as the sum of the weights
of violated constraints. The weights have 1 as their initial value.

• The local search algorithm proceeds as usual until a local minimum is
reached.

• At a local minimum, the weights of constraints violated in the current state
are increased so that the cost of the current state becomes larger than those
of the neighboring states. The local search algorithm then resumes.

Similarly to other local search algorithms, this algorithm is incomplete; namely,
it cannot prove the unsatisfiability of a problem explicitly, and, furthermore,
it may fail to find a solution to a problem even if the problem is satisfiable.
Therefore, for practical usage, we may need to set an upper bound of the
number of repetitions to halt the procedure.

3 The Distributed Breakout Algorithms

Recently, several researchers have developed distributed constraint satisfac-
tion algorithms for solving the DisCSP [1,3,5,20,22,24,25]. In distributed con-
straint satisfaction algorithms, all of the agents perform their search proce-
dures concurrently while communicating information on their search processes
with each other. In this paper, we introduce a new series of distributed con-
straint satisfaction algorithms called distributed breakout algorithms. This is
inspired by the breakout algorithm for the (centralized) CSP. This section
gives a macroscopic view of the distributed breakout algorithms by describing
three functionally divided operations: core operation, breakout operation, and
termination detection operation.

3.1 Core operation

A macro-level behavior of the distributed breakout algorithms is that all of the
agents repeatedly make local changes concurrently while coordinating their ac-
tions through a communication protocol. A major characteristic is that search
and coordination are separated, i.e., all of the agents alternate search and coor-
dination synchronously. Before describing the core operation of the distributed
breakout algorithms, we first define the term neighbors as follows.

Definition 1 (Neighbors) For each agent i, i’s neighbors are a subset of
the agents that i has to contact in order to examine whether its inter-agent
constraints are violated.

7

For example, in Fig. 1, agent 1’s neighbors consist of agents 2 and 3 since agent
1 has inter-agent constraints (derived from l13 and l26) that include variables
belonging to agents 2 and 3.

The core operation of the distributed breakout algorithms is as follows: each
agent first sets an initial set of assignments for variables and exchanges the
set with its neighbors, then repeats the following until a solution to a DisCSP
instance is found or a predetermined upper bound is reached. We call one such
cycle a round.

(1) Each agent performs search to find a set of local changes that would
reduce the cost (the sum of the weights of violated constraints) and then
exchanges information on the set of local changes with its neighbors to
identify potential conflicts.

(2) Each agent makes all of the local changes in the set found in the above
step if they do not involve any potential conflict; otherwise, the agent
makes all/some of the local changes in the set if they are still valid after
the conflict resolution with its neighbors. Then, the agent exchanges a
set of assignments for variables with its neighbors.

The details of identifying and resolving potential conflicts are specified in our
implementations described in Sections 4 and 5.

Using this core operation, the agents can make multiple local changes concur-
rently in one round, where two types of messages are exchanged in turn. The
first message is for notifying information on a set of local changes, called the
improve message; the second is for notifying a set of assignments for variables,
called the ok? message.

3.2 Breakout operation

Similar to local search algorithms for the CSP, the distributed breakout al-
gorithms have the drawback of possibly getting stuck at local minima. In the
distributed breakout algorithms, the local minimum is defined as follows.

Definition 2 (Local minimum) A state is called local minimum if some of
the agents are violating constraints and no subset of the agents can make local
changes resulting in a state with a lower cost.

Detecting the fact that the agents as a whole are in a local minimum requires
global communication among agents. In a distributed environment, however,
such global communication is usually expensive. Therefore, we introduce a
weak notion of local minimum, a quasi-local minimum, which is detectable by
local communication among agents.

8

Definition 3 (Quasi-local minimum) A state is called quasi-local mini-
mum if there exists an agent that violates some of its constraints, and neither
this agent nor some of its neighbors can make local changes resulting in a state
with a lower cost.

We should note that if a state is a local minimum, that state is also a quasi-
local minimum; on the other hand, if a state is a quasi-local minimum, it is not
necessarily a local minimum since, in the state, there may exist some agents
that can make local changes resulting in a state with a lower cost.

To escape from local minima, the distributed breakout algorithms use a tech-
nique called breakout at quasi-local minima, where an agent increases the
weights of constraints that are known to be violated at a quasi-local minimum.
Note that, in the distributed breakout algorithms, a weight is associated with
each constraint, and each agent measures its cost as the sum of the weights of
violated constraints.

3.3 Termination detection operation

A distributed constraint satisfaction algorithm has to be terminated when
all of the agents obtain solutions to their local problems. To achieve this,
each agent maintains a counter called t counter in the distributed breakout
algorithms. In each round agent i updates the counter, which is initialized to
zero, as follows.

(1) If having constraint violations, agent i sets the value of its t counter to
zero; otherwise, it keeps the current value of its t counter. Then, agent i
sends the value of its t counter to its neighbors.

(2) After receiving t counters from all of its neighbors, agent i sets the value
of its t counter to the minimum value of i’s and the neighbors’ t counters.
Then, if neither agent i nor some of its neighbors have constraint viola-
tions, agent i increases the value of its t counter by 1.

With these operations, we can ensure the following.

Theorem 1 If the value of agent i’s t counter is d, every agent whose distance
from agent i is within d obtains a solution to its local CSP.

Note that the distance between agents is measured using the concept of neigh-
bors. That is, if agent i has agent j among its neighbors, the distance from
agent i to agent j is one; if agent i does not have agent j in its neighbors but
one of agent i’s neighbors does, the distance is two (i �= j); generally, if agent
i can reach agent j via at least d − 1 agents, the distance is d.

9

�������� �	
 �� ���
��� �	
 �� ������	�
� ��� �������	��
�	

�	 �	��
 �� ��� ����
����
�
� ��	�
� ������� � ��
������ ��
�	�� � �	
 �� ������	�
� ��� �������	�
� �	�������
����� � ������� ��	� ��
 �	��� � ��	���	� ���	������� ����	 ��

������ ������ ��
����	�
 �	���	� ���� �	�������
��
�	�	 ��	 ����
����
 �����
���� 	��

� ������� � ��

�
� �� �
�	 � � �	
 �� ����� ����	�
��
 ����� �	���	
�	 ���
�
�	�� � ������� ���
�	 �������
��� �� �	
� �	�������
����	�
 �	���	� ���� �	�������
� ������� � ������� ����	 ��
�� ��� �	������� � ���������
�� �	�
�	�
 ��� ���	 �� �
� �	������ ���	 ����
����
 �����
���� 	��

� ������� � � ������� � ��

�
� �� �
��
 	
� �
��� �
 � ����� ����� ������� 	��

����	��	
�	 �	��
� �� �����
	� ����
����
��
�
� �� �
�� �	 ��	� ��
 ������	 ��� ��
	�
��� ������
 	��

���	 ��� ��
�	 ����� ����	� �� �	�
����

���	 �������	 ��
�	 ����� ����	� �� �	
��
 ��	 �
��� ����� ��
	� ������
 �	����
����
�
� �� �
�	�� � �	
 �� ������	�
� ��� �������	�
� �	�������

�
� ���

Fig. 3. Distributed breakout algorithms (sketch of the procedure for agent i)

A proof of this theorem is as follows.

Proof : We can prove this inductively. When the value of agent i’s t counter
is 1, the theorem obviously holds since the value of the counter is increased
from 0 to 1 when neither agent i nor some of its neighbors have constraint
violations. Next, we assume that the theorem holds when d is up to some
specific value, say du. According to the operation for updating the counter,
the value of agent i’s counter increases from du to du + 1 if and only if neither
agent i nor some of its neighbors have constraint violations and the value of
their counters is equal to or larger than du. By the assumption, this is when
every agent whose distance from agent i is within du + 1 obtains a solution
to its local CSP. This means that the theorem also holds when d is du + 1.
Therefore, the theorem is proved by induction. �

According to this theorem, if the value of some agent’s t counter reaches a
distance that covers all of the agents, then all of the agents obtain solutions
to their local CSPs, i.e., the DisCSP is solved. It may be difficult to know the
exact value of the counter that can cover all of the agents, but fortunately it
is sufficient to know an upper-bound value of it. Such an upper-bound value
could be the diameter of the agent network in the DisCSP.

Fig. 3 summarizes the distributed breakout algorithms, where the above three
operations are merged into one procedure.

10

��������� ����

���� ���������
�
�� ���	
� � ��� �
���	����

���� 	
� � �� �������� ����
� �������
�� �� �����	�
 ���
���� �
� ��
 �
���� � ��� ����������� �� ��
���� � �������� �� ��
���� ������� �� �����
�� � ���� �	
���! 	
� �! �������� �� �
���	����
��"� ��� ����� �� � �� �
������� ��

��#� ���� ���
��$� ���� ��	
����
���� ��� ��

Fig. 4. Main of Single-DB

4 Single-DB

Single-DB, formerly called the distributed breakout algorithm in our previ-
ous paper [24], is one implementation of the distributed breakout algorithms.
It is basically designed for the DisCSP where each agent has a single local vari-
able and its related constraints. In this section we provide the basic ideas and
the details of Single-DB followed by an illustration of the solution process.

4.1 Basic Ideas

Since an agent has only one local variable, searching for a set of local changes
that would reduce the cost is equivalent to selecting an assignment for the
variable that would reduce the cost. In Single-DB, by following the min-
conflict heuristic [15], we have an agent select an assignment for the variable
that would maximally reduce the cost. Although this requires an agent to
sweep all values in a variable domain, we can generally expect the size of a
variable domain not to be so large.

To avoid a potential conflict among local changes, we allow an agent to make
a local change if it would reduce the cost by more than any of its neighbors
would; otherwise we make an agent withdraw a local change. Ties are broken
deterministically such that, given that each agent has a unique ID number, we
give priority to the agent with the smaller ID number if a pair of neighboring
agents has the same degree of cost reduction. By resolving a potential conflict
in this way, no pair of neighboring agents make their local changes simulta-
neously. On the other hand, if two agents are not neighboring, it is possible
for them to make local changes simultaneously. This means that we can elim-
inate an oscillation among multiple states that might be typically caused by
simultaneous local changes made by neighboring agents. To realize this, before
making a local change, an agent needs to send its neighbors the degree of cost
reduction that would be achieved by the local change, called the improve, as
the information on the local change.

11

��������� ���� ��

���� ������� �� ��
���� ����� 	
��

�
�� �	

�

���� ��
� � ���� �� ����
���� ��	
� ��
� � ���� ��

���� ���� � �������� ����� � 	�� � � �����
���� ���� � ��

���� ������� �� ������� � ��
���� � ��� � 	�� �� !� ����� 	
�� ��
��"� 	# �!� !$� %��&$!� �� ����!����!� '��� �� �����
��� �
��(� 	� ������� � ��
������ � ����

���� ���	 �
�����
���� ��
� � ���� ��)*+,��
���� ��� 	�

���� ��� ��

���� ��� ��

��������� ���	 �
����

���� ���� � �� �	� �� %��&$!� �� �-� ���
�!� ����!����!� 	� �� ����� 	
�� ��
����
����	� � �� #����'
� ��.���
 �&��� �� ���! �� 	�!����
���� ��� 	�� � �� ����&����! !$�! %�	
 &��� !$� ��.���
 �&��� �� ���! �� 	�!����
���� 	� ���� � � � ����
���� ����
����� � �� ����
���� �
��

���� ����
����� � ��)*+,��
��"� � ������� � �� ��
��(� ��� 	�

���� 	�
����	� � � � ����
���� �����	� � �� ����
���� ����
 ��� ��)*+,��
���� �
��

���� �����	� � ��)*+,��
���� ����
 ��� �� ����
���� ��� 	�

���� ���� 	����������
����	� �� ���� �� � ������� �� !� ���&$'����

Fig. 5. Wait ok of Single-DB

4.2 Details

The details of Single-DB are illustrated in Figs. 4 - 6. Each agent follows
these procedures, each of which is summarized as follows.

• In the Main procedure in Fig. 4, an agent sends an initial assignment for
the variable to its neighbors via ok? messages (Step 06) and repeats calling
Wait ok and Wait improve until a solution is found or a predetermined
upper bound of rounds, Maxrounds, is reached (Step 07–10).

• In the Wait ok procedure in Fig. 5, an agent waits for all of the ok?
messages issued by its neighbors and invokes Send improve (Step 10 in
Wait ok), where the agent selects an assignment for its variable that would
give the maximal cost reduction (Step 03 in Send improve) and sends
improve messages, which include quadruples: variable, improve, current cost,
and t counter, to its neighbors (Step 17 in Send improve).

• In the procedure Wait improve in Fig. 6, an agent waits for all of the
improve messages issued by its neighbors and invokes Send ok (Step 18 in
Wait improve), where, depending on the state the agent is in, the agent
increases the value of t counter by 1 (Step 03 in Send ok), increases the

12

procedure Wait improve
(01) counter := 0;
(02) wait improve mode := TRUE;
(03) while wait improve mode do
(04) when i received improve(xj, improvej, cost j, t counter j) do
(05) counter := counter + 1;
(06) t counter i := min(t counter i, t counter j);
(07) if improvej > improvei then
(08) canmove i := FALSE;
(09) quasi lmi := FALSE;
(10) end if
(11) if improvej = improvei and j < i then
(12) canmove i := FALSE;
(13) end if
(14) if cost j > 0 then
(15) consistent i := FALSE;
(16) end if
(17) if counter = neighbors i then
(18) Send ok;
(19) wait improve mode := FALSE;
(20) end if
(21) end do
(22) end do

procedure Send ok
(01) Newweight := null;
(02) if consistent i then
(03) t counter i := t counter i + 1;
(04) if t counter i = maxdistance then
(05) broadcast that a solution has been found;
(06) terminate all procedures;
(07) end if
(08) end if
(09) if quasi lmi then
(10) for each violated constraint C do
(11) increase the weight of C by one;
(12) add (C, the new weight) to Newweight;
(13) end do
(14) end if
(15) if canmove i then
(16) val i := new val i;
(17) end if
(18) send ok? (xi, val i, Newweight) to neighbors;

Fig. 6. Wait improve of Single-DB

weights of violated constraints by 1 (Step 11 in Send ok), or makes a local
change (Step 16 in Send ok). It then sends its neighbors ok? messages,
which include triplets: its variable, a current assignment of its variable, and
information on constraints whose weights are updated (if weight update oc-
curs) (Step 18 in Send ok). The current round ends at this step, and agent
i then turns to the next round, where it starts again with the Wait ok pro-
cedure to wait for the ok? messages issued by its neighbors in the previous
round.

We show snapshots of the solution process of Single-DB in Fig. 7. This
illustrates an instance of the distributed graph coloring problem, where agent
i having the node xi, whose possible colors are black and white, tries to find
a color so that its related constraints, derived from links connected to xi,
are satisfied. We assume that initial assignments are chosen as in Fig. 7(a).

13

x1

x2

x3

x6

x5

x4

1

1

1

1

1

1

1

1

1

1

1

11

1

x1

x2

x3

x6

x5

x4

2

2

2

1

1

1

1

2

1

2

1

11

2

x1

x2

x3

x6

x5

x4

2

2

2

1

1

1

1

2

1

2

1

11

2

x1

x2

x3

x6

x5

x4

2

2

2

1

1

1

1

2

1

2

1

11

2

(a) (b) (c) (d)

Fig. 7. Snapshots of the solution process of Single-DB

Each agent communicates the initial assignment with its neighbors via ok?
messages. After receiving ok? messages from all of its neighbors, each agent
identifies a local change by selecting an assignment for a node that would
achieve the maximal cost reduction under its current view and exchanges
improve messages with its neighbors. Since the weight of all constraints is 1,
no agent has a positive improve in this state. Therefore, agents increase weights
of violated constraints, x1=white and x6=white, x2=black and x5=black, and
x3=white and x4=white, by 1 as in Fig. 7(b). Then, the improve of agents
1, 3, 4, and 6 becomes 1, since each of them can reduce its cost from 2 to 1
by changing its assignment from white to black. On the other hand, those of
agents 2 and 5 are still not positive. Through conflict resolution, both agents
1 and 3 are selected as the agents that have the right to make local changes,
since each one of them has the largest improve among itself and its neighbors
and has a smaller ID number than its competitor (agent 6 for agent 1 and
agent 4 for agent 3). Each of them thus makes a local change from white to
black as in Fig. 7(c). Next, the improve of agent 2 is 4, while those of the other
agents are not positive. Therefore, only agent 2 makes a local change, and all
of the constraints are satisfied as in Fig. 7(d).

5 Multi-DB

Multi-DB [9] is another implementation of the distributed breakout algo-
rithms. A notable feature of Multi-DB is that it can solve the DisSAT prob-
lem where each agent has multiple local variables and their related clauses. In
this section we present the basic ideas and the details of Multi-DB followed
by its stochastic variations.

5.1 Basic Ideas

To find a set of local changes that would reduce the cost, an agent in Single-
DB simply selects an assignment for its variable from the variable domain

14

that would give the maximal degree of cost reduction. However, in Multi-
DB, since an agent has multiple local variables, it has to search in the space
of combinations of assignments for the multiple local variables. Such a search
space is usually much larger than the domain of one local variable. Therefore,
we make each agent run a local search algorithm for a certain number of steps
to find a set of local changes that would reduce the cost.

We use a variant of WalkSAT [18], which is known to be one of the most effi-
cient local search algorithms for the SAT problem, as a local search algorithm
for each agent. In each round of Multi-DB, each agent starts from a current
set of assignments for its local variables and searches for the set of assignments
that would reduce the cost as follows: repeat the following procedure Maxflips
(given as a parameter) times.

(1) Randomly select one of the clauses that is violated under a set of as-
signments for its local variables and a set of the most recently notified
assignments for its neighbors’ variables.

(2) In the selected clause, pick up one local variable to flip (change an assign-
ment from true to false or vice versa) such that: if there are local variables
in the clause that can be flipped without violating other clauses, pick up
one of them randomly; otherwise, with probability p pick up any local
variable in the clause randomly and with probability 1−p pick up a local
variable that minimizes the sum of weights of clauses that are currently
satisfied but would be violated if the variable were flipped. Then, perform
the flip to virtually change an assignment for its local variables.

After finishing the procedure, the agent identifies the best set of assignments
(in terms of the degree of cost reduction) among those found during the repe-
titions to obtain a set of flips, called Possflips, whereby it can turn the initial
set of assignments that our WalkSAT variant starts from into the best set of
assignments.

Our WalkSAT variant uses the techniques called sideway rule and tabu list for
efficiency. In the sideway rule, when choosing the best set of assignments, each
agent breaks ties in favor of the one with the largest hamming distance from
the initial set of assignments that our WalkSAT variant starts from. On the
other hand, each agent maintains a tabu list that keeps the history of the sets
of assignments for its local variables that have been sent to its neighbors in the
latest TL rounds. The agent is prohibited from taking the sets of assignments
in its tabu list during the procedure.

As described earlier, Single-DB uses a simple method for resolving poten-
tial conflicts among local changes of neighboring agents. Using this method,
no pair of neighboring agents make their local changes simultaneously. Al-
though we could apply this method for the DisSAT problem where each agent

15

has multiple local variables, such an approach may not be a good idea, since
it misses the opportunity to make more local changes in parallel. We there-
fore introduce a more sophisticated conflict resolution method, that allows
neighboring agents to make local changes simultaneously while ensuring that
the total cost is reduced by their local changes. In this method, each agent
exchanges Possflips, a set of possible flips the agent is planning to perform,
with its neighbors, and looks ahead to reason what the state in the next round
would be like. Then, each agent identifies a conflict among possible flips, which
is defined as follows.

Definition 4 (Conflict among possible flips) Two (or more) possible flips
conflict with each other if 1) they belong to different agents, and 2) in the next
round they would violate a clause that is currently satisfied.

In other words, two possible flips conflict with each other if they make a “fal-
lacy of composition”, that is, each of the possible flips contributes to reducing
the cost if the other is not performed, but their composition accidentally con-
tributes to non-reducing the cost.

If an agent detects that no possible flip in its own Possflips conflicts with
those in its neighbors’ Possflips, the agent can perform all of the flips in the
Possflips. On the other hand, if an agent detects that one of the possible
flips in its own Possflips conflicts with those in its neighbors’ Possflips, the
agent resolves the conflict by withdrawing the possible flip if it has the lowest
improve, i.e., the lowest degree of cost reduction, among conflicting agents.
Ties are broken deterministically such that we make an agent having a larger
ID number withdraw its possible flip when two conflicting agents have the
same improve.

After this conflict resolution process, there may be a case in which an agent’s
Possflips are partially withdrawn, i.e., some elements are withdrawn and the
others are not. To deal with a partially withdrawn Possflips, one option would
be that we make an agent withdraw it because we cannot say for certain
whether the partially withdrawn Possflips can reduce the cost. However, in
Multi-DB, since an agent can flip (or keep the value of) any variable asso-
ciated with a partially withdrawn Possflips without causing any conflict with
its neighbors’ possible flips, we make an agent execute the WalkSAT variant
again over the variables associated with the partially withdrawn Possflips to
find Backupflips, a subset of the partially withdrawn Possflips that can cer-
tainly reduce the cost. Since any possible flip in Backupflips obviously does
not conflict with its neighbors’ possible flips, an agent can perform all of the
possible flips in Backupflips immediately.

16

��������� ����

���� ���������
�
�� ���	
� � ��� �
���	����

���� 	
��� �� �����
���� �
���� �� � �
� � �������� ����
� �������
����
���� �
� ��
 �
���� � ��� �����
� �� ��
���� � �������� �� ��
���� ��������� �� �����
�� � ���� �	
��! �
����! ���������� �� �
���	����
��"� ��� ����� �� � �� �
������� ��

��#� ���� ���
���� ���� ��	
����
���� ��� ��

Fig. 8. Main of Multi-DB

��������� ���� ��

���� ������� �� ��
���� ��������	�
 � �� �	

�
���� �������	�

�
�� �	

�

���� �� ������ � �� ��������	�
 ��
����
�	� �� ���� �� �����
���� ��	
�
�	� �� ���� ��

���� ���� � �������� ����� ������� � ��

�	���� ��� � ��

��!� ������� �� ������� " ��
��#� �� ������� �� ��������	�
 ��
���� 	$��� �%� &��'%�� �� �
	��� (��� �� ��

�	��� �
���� 	� ������� � ��	������ � ����

���� ���	 �
�����
����
�	� �� ���� ��)*+,��
���� ��� 	�

���� ��� ��

���� ��� ��

Fig. 9. Wait ok of Multi-DB

5.2 Details

Details of Multi-DB are illustrated in Figs. 8 - 12. Multi-DB also consists
of five procedures: Main, Wait ok, Send improve, Wait improve, and
Send ok.

Multi-DB and Single-DB have almost the same main procedure. Fig. 8
shows that agent i starts Multi-DB by randomly determining a set of as-
signments for its variables (Step 03) and sending it to the neighbors via ok?
messages (Step 07). Then, agent i repeats Wait ok and Wait improve until
a solution to a DisSAT problem instance is found or a predetermined upper
bound of rounds, Maxrounds, is reached (Steps 08–11).

In the Wait ok procedure in Fig. 9, agent i collects ok? messages from its
neighbors while constructing Currentview i, which records a set of current as-
signments for all of i’s and its neighbors’ variables (Step 09). When ok? mes-
sages come from all of its neighbors, agent i calls Send improve in Fig. 10.

In Send improve, agent i makes Possflips, a set of possible flips that agent

17

��������� ���� �����	�

���� ���� � �� ��� 	
 ������ 	
 ��� �	����� ������� ����� �������	
�� ��
���� � �� ���� ��
���� ���	
�� � �� �������	
�� ��
���� �� ���� � � � 	
��
���� ����
����� � �� �� !�
��"� ���

��#� ����
����� � �� $%&'!�
��(� � ������� � �� ��
��)� � �� �������	
�� ��
���� ��� � � � 	� ���
�� ��

���� � �� ��� ����*�� �������� *+ 	��
���� ������
�� �����
���� � �� � ��� ��� ����� ,--���
���� �� ��� ����*�� ������ � � �� ����� 	
��

���� � �� ������� ��� 	
 ��� �	����� ������� ����� � �
���� �� � � � 	
��

��"� � �� ��
��#� ���	
�� � �� � �
��(� ��� ��

��)� �� � � � 	
��

���� �-���� ���	
�� � *+ �
����� �����
���� ��� ��

���� �� � � � 	
��
���� ������
���� ��� ��

���� ��� ��

��"� ��� ��

��#� ��� ��

��(�
����	�
�
�� ���� � � ��

��)� ���
����	�
�
�	 �����	�	
��

�
�

���� ���	������ �� ��� ����*�� ������ � ���	
�� ��
���� �����
�� �� ������ � ���	������ ���� ��� �.�����
�	� ��	�� � ������ ��
���� -�	�*� ��+ 	���� ,-� �/��-�
	� �����
�� �
���� ��� ���������0 �����
��0
����	�

�
0 ���� �0 � ������� �� �	 ����*	���

Fig. 10. Send improve of Multi-DB

i can perform under Currentview i, and sends such a set to its neighbors via
improve messages. More specifically, agent i first measures cost i, the sum
of weights of violated clauses under Currentview i (Step 01). If cost i = 0,
agent i makes the state variable consistent i true (Step 05), prohibits flips
for all of its variables in the current round (Step 32), and sends improve
messages to its neighbors (Step 33). On the other hand, if cost i �= 0, after
making consistent i false and t counter i zero (Steps 07, 08), agent i performs
local search (Steps 09–26) to make Possflips (Step 31), prohibits any other
flips except for Possflips in the current round (Step 32), and sends improve
messages (Step 33).

In Wait improve shown in Fig. 11, agent i collects improve messages from
all of its neighbors while updating the state variables and the views. The views
updated here are Nextview i (Step 07) and Improveview i (Step 08). Nextview i

records a set of possible assignments for all of i’s and its neighbors’ variables
in the next round; namely, it indicates what the state in the next round would
be like. Improveview i, on the other hand, records improves, i.e., the degrees
of cost reduction, of agent i and its neighbors. When improve messages come
from all of its neighbors, agent i calls Send ok shown in Fig. 12.

18

��������� ���� ������	

���� ������� �� ��
���� ��	� 	
�����
�� �� �	
��
���� ��	
� ��	� 	
�����
�� ��

��� ���� � �������� 	�������� �����	��� 	
������ � ����� � � ��������� ���� � ��

���� ������� �� ������� � ��
���� � ������� � �� ����� ������� �� � ����������
���� ��� !� �����	�� � "# �����	�� �
��$� �� 	
������ !� �
������	�� ��
��%� 	� ����� � � ����
���� ����	����� � �� &'()��
���� ��� 	�

���� 	� ������� � ��	������ � ����

����
	�� ��
��� ��	� 	
�����
�� �� &'()��
���� ��� 	�

���� ��� ��

���� ��� ��

Fig. 11. Wait improve of Multi-DB

In Send ok, agent i detects the termination condition (Steps 03–05), increases
the weights of violated clauses (Steps 08–12), or performs variable flips (Steps
14–35) depending on the situation in the current round, and then sends ok?
messages to its neighbors (Step 40). In detecting the termination condition, an
agent in Single-DB and Multi-DB follows the same procedure. In increas-
ing the weights of violated clauses, agent i first checks whether its Nextview i

and Currentview i are the same (Step 07). If this is true, it means that nei-
ther agent i nor its neighbors have a possible flip, and thus agent i detects
a quasi-local minimum. When detecting a quasi-local minimum, an agent in
Single-DB and Multi-DB basically follows the same procedure.

On the other hand, in performing variable flips, agent i proceeds as follows.
For each clause that is not violated in the current round but would be violated
in the next round, agent i identifies the possible flips (Culprit flips) that would
cause the violation and the agents (Culprit ag) who plan to perform those flips
(Steps 15, 16); agent i also checks whether the following three conditions hold
(Step 17): 1) agent i is responsible for the violation, 2) the violation is caused
by at least two agents, and 3) agent i has the lowest improve among Culprit ag.
Ties in the third condition are broken deterministically by comparing agent
ID numbers, i.e., the third condition holds when agent i has the largest ID
number among agents with the same lowest improve. If the first two conditions
hold, it is clear that Culprit flips are in conflict with each other; in other
words, this clause would be accidentally violated in the next round by the flips
simultaneously performed by agents in Culprit ag. To avoid this, an agent that
meets the third condition withdraws one of its flips in Culprit flips (Step 18)
(ties are broken randomly), thereby resolving a conflict in Culprit flips.

As a result of the above procedure (Steps 14–19), agent i sometimes withdraws
some of its possible flips. However, when agent i does not have to withdraw any
of its possible flips, this means that it can perform all of them without causing

19

��������� ���� ��

���� ��������� �� ����	
��
� �� ��	
�
��	� � 	
��

���� � ���	��� � �� � ���	��� � � �	
��� �� � ���	��� � � ����
��	�� 	
��

���� ��������� ���� � �������� ��� ���� �����	 ��������� ��� ����������	 ��� ��

���� ���

���� �� �������� � � �����	����� � 	
��

���� ��� ���� ������� ������ � ����� �����	����� � ��

��!� �������� ��� "��#�� �� � �$ ���	
���� �� � �� �� �����%�#��� ������ 	
��
���� ��� ��& ��� ��" "��#��� �� ��������� 	 ��� ��

��
� ��� ��

���� ���

��� ��� ���� ������ ��� ������� ����� �����	����� � ��� ������� ����� �������� � ��

���� ������� ���
 �� '��� ������# ���� ��������	
���� ������� �� �� �#���� �������# �� ������� ������� ���
 	
���� �� �� � ������� ��� � ��������� �� � �
�

� �� ��� ��� ��"��� ����� � ����# ������� ��� 	
��
���� "������" ��� �� �(� '��� �� ������� ���
 	 ��� ��

��!� ��� ��

�
�� �� � ����(� "������"� ��$ '�� 	
��

�
�� �����
� �� ���������
�	
�

� ���

�
�� � �� �����	����� �	 � �� ��
� �	 �������� � �� � 	
�
� ��� � � � 	� ������
 ��

�
�� � �� �(� '������� ������� �������� �$ ��������
�������	 ����	
�
�� � �� � "��� �(� ���� '�����	
�
�� �� �(� ������� ����� �� � �� ����� 	
��

�
�� � �� "��#���� ��� �� �(� ������� ������� ����� � 	
�
!� �� � � � 	
�� � �� �	 �������� � �� � 	 ��� ��

���� �� � � � 	
�� ������ �������� � �$
������ ����	 ��� ��

���� �� � � � 	
�� �����	 ��� ��

��
� ��� ��

���� ��� ��

��� �����
� �� �(� ������� ����� �� �������� �	
���� ��� ��

���� ��� ��

���� ��� ��

���� �� ����� �� � �� 	
�� ������ ��� ������ ������� �� �����	 ��� ��

��!� ��� �����
 � �� �����	
��� ��� ����& �����
�& ���������� �� ���#�����	

Fig. 12. Send ok of Multi-DB

any accidental new clause violation. In this case, agent i performs those flips
(Step 21) and sends ok? messages to its neighbors (Step 40). On the other
hand, when agent i withdraws some of its possible flips, it performs local
search again (Steps 23–33) over the flippable variables, meaning the variables
whose flips are not prohibited or withdrawn. The flips obtained from this local
search obviously do not conflict with those of other agents, and agent i can
therefore perform these flips immediately (Step 34) to send ok? messages to
its neighbors (Step 40).

Fig. 13 depicts snapshots of a typical solution process of Multi-DB for the
DisSAT problem instance shown in Fig. 2. As shown at the top of Fig. 13,
we assume that both agents 1 and 2 assign TRUE for all of their variables
and exchange them via ok? messages. As a result, each finds that the current
cost is 3 because agent 1 violates the clause C2, C5, C6 and agent 2 violates

20

agent 1 agent 2

(x1, x2) = (T, T) (x3, x4) = (T, T)

C1: x1 ∨ x2

∗C2: ¬x1 ∨ ¬x2

C3: x3 ∨ x4

∗C4: ¬x3 ∨ ¬x4

∗C5: ¬x1 ∨ ¬x3∗C5: ¬x1 ∨ ¬x3

∗C6: ¬x2 ∨ ¬x4∗C6: ¬x2 ∨ ¬x4

cost1 = 3 cost2 = 3

Possflips = {x1} Possflips = {x3}

agent 1 agent 2

(x1, x2) = (F, T) (x3, x4) = (F, T)

C1: x1 ∨ x2

C2: ¬x1 ∨ ¬x2

C3: x3 ∨ x4

C4: ¬x3 ∨ ¬x4

C5: ¬x1 ∨ ¬x3C5: ¬x1 ∨ ¬x3

∗C6: ¬x2 ∨ ¬x4∗C6: ¬x2 ∨ ¬x4

cost1 = 1 cost2 = 1

Possflips = {x1, x2} Possflips = {x3, x4}

agent 1 agent 2

(x1, x2) = (T, F) (x3, x4) = (F, T)

C1: x1 ∨ x2

C2: ¬x1 ∨ ¬x2

C3: x3 ∨ x4

C4: ¬x3 ∨ ¬x4

C5: ¬x1 ∨ ¬x3C5: ¬x1 ∨ ¬x3

C6: ¬x2 ∨ ¬x4C6: ¬x2 ∨ ¬x4

cost1 = 0 cost2 = 0

Possflips = {} Possflips = {}

Fig. 13. Snapshots of the solution process of Multi-DB (the clauses marked by ∗
are violated)

the clause C4, C5, C6 (we assume that the weight of all clauses is one). Then,
each performs local search to find Possflips. Agent 1 finds that flipping x1 can
reduce the cost from 3 to 1 and agent 2 also finds that flipping x3 can do
this. These possible flips, x1 by agent 1 and x3 by agent 2, are exchanged via
improve messages. After exchanging the possible flips, each checks whether
there is a conflict among them. Agent 1, for example, can reason that in the
next round the state would be {x1 = F, x2 = T, x3 = F, x4 = T}, which
violates only C6. Accordingly, agent 1 finds that flipping x1 does not conflict
with flipping x3, since they will not cause accidental new clause violation, and
hence performs the flip of x1. Agent 2, on the other hand, follows the same
and performs the flip of x3. After flipping these variables, both exchange their
new values with each other and go to the second round.

In the second round shown in the middle of Fig. 13, since each agent violates
C6, it performs local search to find possible flips. As a result, agent 1 finds
that flipping x1 and x2 leads to no violation, while agent 2 also finds that

21

flipping x3 and x4 leads to no violation. Then, they exchange these possible
flips. After exchanging them, both agents now find that these possible flips are
in conflict with each other, since these flips would make the state in the next
round {x1 = T, x2 = F, x3 = T, x4 = F}, where C5 is accidentally violated.
Therefore, agent 2 withdraws the flip of x3 in this case because agent 2’s
improve is one, which ties with agent 1’s improve, and its ID number is larger
than agent 1’s ID number. After the withdrawal, agent 2 reconsiders whether
x4 should be flipped. More specifically, agent 2 performs local search again
over x4, the only flippable variable, to determine an assignment for x4. In this
case, agent 2 determines that an assignment for x4 should be TRUE. To sum
up, in the second round agent 1 flips x1 and x2 just as planned, while agent 2,
on the other hand, flips no variable. After such flipping, they exchange their
new values and reach the state shown at the bottom of Fig. 13. This state is
obviously a solution to this problem instance, which is to be detected by the
agents within a few more rounds.

5.3 Stochastic variations

The original version of Multi-DB used random restart, where the agents
simultaneously reinitialize a set of assignments for variables if a solution has
not been discovered after a fixed number of rounds [9]. This is a simple and
effective method for agents to avoid stagnation of the search caused by a bad
set of initial assignments for variables. Indeed, we observed that Multi-DB
was improved by random restart with a carefully chosen cutoff round. However,
it is difficult to set an appropriate cutoff round at which the agents restart
randomly, since the search performance is very sensitive to the cutoff round.
Moreover, when restarting, the agents waste all the effort that they have put
into searching for a solution and restart their search from scratch. Clearly, this
process is wasteful. Therefore, we introduce new methods for agents to avoid
stagnation of the search: random break and random walk.

Random break is similar in its basic idea to DBA(wp) [27]. DBA(wp) is a
stochastic variation of Single-DB, which proceeds as Single-DB, except
that when two neighboring agents have the same improve, they make local
changes probabilistically (both of them may or may not change, or just one of
them may change). DBA(wp) adds some randomness to Single-DB but does
not always ensure cost reduction. However, random break ensures cost reduc-
tion in a non-deterministic way. In this method, each agent keeps a random
variable whose value is randomly chosen in each round and sends this value
to its neighbors via improve messages. When two neighboring agents have the
same improve, they break the tie by giving the right to make changes to the
agent with the smaller value for the random variable instead of the agent with
the smaller ID number. Note that, in this method, a tie break does not always

22

occur only in one direction, since a value for the random variable varies in
each round.

Random walk is a method that allows randomized up-hill moves with a fixed
probability [10,18]. With a fixed probability rw, this method works in the fol-
lowing way: 1) select a currently violated clause randomly, 2) select one of the
variables in the clause randomly, and 3) flip the variable. This is called a ran-
dom walk step. We introduce random walk into our algorithm by having each
agent perform a random walk step with a fixed probability. More specifically,
an agent proceeds as usual, except that just before flipping some variables,
with a fixed probability rw it replaces those variables with a variable deter-
mined by the random walk step and flips it. Obviously, since this new variable
flip is selected with no regard as to how it contributes to the current cost, it
may increase the cost.

We first combine random break with Multi-DB and call the resultant algo-
rithm Multi-DB+. Then, we add random walk to Multi-DB+ and call the
resultant algorithm Multi-DB++.

6 Evaluation

We evaluated the performance of Single-DB and the family of Multi-DB
through experiments using satisfiable problem instances from the uniform ran-
dom 3-SAT in SATLIB (http://www.satlib.org/). The uniform random 3-SAT
is generally considered to be one of the hardest classes of the 3-SAT problem.
In these experiments, to convert a SAT problem instance into a DisSAT prob-
lem instance, we evenly partitioned n variables of a SAT problem instance
among k agents and assigned each clause to all of the agents having variables
in the clause.

To apply Single-DB to a DisSAT problem instance in which each agent
has multiple local variables and their related clauses, we used the following
method: first, introduce additional virtual agents to distribute multiple local
variables so that each resulting agent will have exactly one variable, then run
Single-DB for the given instance involving these virtual agents.

We compared our algorithms with Multi-AWC [26]. Multi-AWC is one of
the most efficient algorithms for solving the DisCSP where each agent has
multiple local variables and their related constraints. Just as with AWC, the
performance of Multi-AWC can be enhanced by employing an appropri-
ate nogood learning technique. Nogood learning, however, generally requires
agents to have a lot of extra memory. For example, AWC with full learning
demands extra memory during algorithm execution, and such memory de-

23

mand grows exponentially in the worst case. In addition, agents have to check
whether the nogoods that have been learned are violated, which also requires
a lot of computation to be performed. Accordingly, Multi-AWC used in the
experiments did not employ nogood learning for a fair comparison with our
algorithms, which requires agents to have very little memory.

In order to implement a distributed algorithm, we have to determine an un-
derlining distributed system on which the algorithm is executed. Although
the assumption of a communication model for our algorithm is so common
that we can implement the algorithm on any type of distributed system, for
simplicity we used the synchronous distributed system in our experiments.
The synchronous distributed system is a distributed system in which all of
the agents repeat the cycle of communication and computation simultane-
ously [13]. One cycle consists of the following three steps: 1) all of the agents
read incoming messages that were issued in the previous cycle, 2) all of the
agents perform their local computation, and 3) all of the agents send mes-
sages to other agents. We implemented all of the algorithms on a simulator
of the synchronous distributed system and measured the following as their
communication and computation costs, respectively.

#cycles: the number of cycles consumed until the agents find one solution
to a DisCSP instance. Since agents communicate with each other in every
cycle, the number of cycles increases with the amount of communication
among agents. Thus, we regard one cycle as the unit of communication cost
and used the number of cycles as the communication cost of an algorithm.
Note that one round in the distributed breakout algorithms, in which the
agents perform one series of Wait ok and Wait improve, corresponds to
two cycles on this simulator.

#flips: the total sum of the maximal number of flips over the agents at each
cycle until the agents find one solution. More specifically, we calculate such
a measure like this: at each cycle we first identify the bottleneck agent, which
performed the maximal number of flips in its local computation, and sum
all of the maximal numbers of flips over all consumed cycles. Although
the amount of computation at each cycle varies among the agents, the total
amount of computation is dominated by the bottleneck agents. This measure
can thus be considered the computation cost of an algorithm. Note that for
Multi-AWC, we measured the total sum of the maximal number of visited
search nodes (instead of the maximal number of flips) over the agents at
each cycle until the agents found one solution.

We set the upper bound of the number of cycles to 5000n, where n is the total
number of variables, and cut off a run if it exceeded the upper-bound cycle in
order to finish our experiments within a reasonable amount of time. For a run
cut off, we used #cycles and #flips at the time the run was cut off.

24

Table 1
Success ratio on uniform random (Dis)3-SAT where n variables are divided by k
agents

Single- Multi- Multi- Multi- Multi-
n k DB AWC DB DB+ DB++

100 2

0.991

1.000 1.000 1.000 1.000
4 1.000 1.000 0.999 1.000
5 1.000 0.998 1.000 1.000

10 0.999 0.996 0.997 1.000
20 0.998 0.995 0.996 1.000

125 5 0.98 1.00 0.99 1.00 1.00
25 0.97 1.00 0.97 1.00

150 3

0.95

0.98 0.99 0.99 1.00
5 0.91 1.00 0.98 1.00

10 0.90 1.00 0.97 1.00
15 0.87 0.96 0.97 1.00
25 0.83 0.92 0.98 1.00
30 0.90 0.96 0.97 1.00

We set the parameters in the Multi-DB family as follows.

• Maxrounds = 2500n. Since we cut off a run at 5000n cycles, we set Maxrounds
in this way.

• Maxflips = n/k, p = 0.3, TL = 5. These are the parameters for the lo-
cal search procedure, the WalkSAT variant, each agent performs. Maxflips
specifies the number of flips each agent performs at each call of the local
search procedure. Since n is the total number of variables and k is the num-
ber of agents, setting Maxflips in this way allows each agent to perform
flips at most the number of times that corresponds to the average number
of variables of each agent. The parameter p is the probability used in the
WalkSAT variant, with which a variable to flip is selected randomly from
a selected violated clause. The parameter TL is the length of the tabu list
also used in the WalkSAT variant.

• rw = 1/(5k). This is a parameter only for Multi-DB++ that specifies the
probability with which each agent performs a random walk step. By setting
rw in this way, we can expect that one agent performs a random walk step
for every five rounds.

In the uniform random 3-SAT in SATLIB, there are 100 satisfiable problem
instances for each n (1000 for n = 100). We gave one randomly chosen initial
set of assignments for variables for each problem instance of each combination
of (n, k) and made each algorithm run. Fig. 14 indicates the mean #cycles and
the mean #flips over 100 (or 1000) runs for each combination of (n, k). Table
1 indicates the ratio of runs that were successfully completed within the upper
bound of the number of cycles. Note that the results of Single-DB do not
depend on k, since Single-DB converts an original problem instance involving
k agents into the one where each virtual agent has exactly one variable. From
these results, we can observe the following.

25

10
0

10
0/

2

10
0/

4

10
0/

5
10

0/
10

10
0/

20 12
5

12
5/

5
12

5/
25 15
0

15
0/

3

15
0/

5
15

0/
10

15
0/

15
15

0/
25

15
0/

30

1*102

5*102

1*103

5*103

1*104

5*104

1*105

5*105

1*106

MultiAWC

SingleDB

MultiDB

MultDBp

MultiDBpp

mean #cycles

10
0

10
0/

2

10
0/

4

10
0/

5
10

0/
10

10
0/

20 12
5

12
5/

5
12

5/
25 15
0

15
0/

3

15
0/

5
15

0/
10

15
0/

15
15

0/
25

15
0/

30

103

104

105

106

107

108

MultiAWC

SingleDB

MultiDB

MultDBp

MultiDBpp

mean #flips

Fig. 14. Mean costs of algorithms (showing MultiAWC, MultiDB, MultiDBp, and
MultiDBpp from the back to the front at every n/k and SingleDB separately from
the rest at every n)

On comparing Multi-DB and Multi-AWC, Multi-DB is better than Multi-
AWC in all cases in terms of both the mean #cycles and the mean #flips.
Moreover, the differences become greater as the number of variables increases,
and Multi-DB achieves at least one order of magnitude improvement in
many cases. On the other hand, Multi-DB obtains a lower success ratio
in the following four cases: (n, k) = (100, 5), (100, 10), (100, 20), and (125, 5).
These results indicate that although Multi-DB scales up better than Multi-
AWC, it sometimes shows very poor performance regardless of the problem
size. We conjecture that this poor performance of Multi-DB is caused by its
lack of randomness. Indeed, except for each agent making Possflips by using
the WalkSAT variant, which involves some randomness, the search process of
Multi-DB is inherently deterministic.

On comparing Multi-DB+ and Multi-DB, we can see that Multi-DB+

is slightly better for some cases but not for others. These results are not so

26

impressive, so it does not follow that adding only random break is effective.

On the other hand, on comparing Multi-DB++ and Multi-DB, Multi-
DB++ shows very clear performance improvement. We should point out that
Multi-DB++ successfully completes its run within the upper bound of the
number of cycles (5000n cycles) in all cases. Furthermore, for almost all cases,
Multi-DB++ has fewer mean #cycles and mean #flips, with the only excep-
tion being the mean #flips for (n, k) = (150, 5), although we can say that the
difference is relatively minor. However, although the results are not shown, we
also observed that in Multi-DB++ the median #cycles and #flips slightly
increase in many cases. These results suggest that the stagnation of the search
processes of multiple agents, which is observed in a very few runs of Multi-
DB, can be avoided by adding random walk at the cost of slightly distracting
their search processes.

On comparing Single-DB and Multi-DB, Multi-DB is better in almost
all cases in terms of both the mean #cycles and the mean #flips. The reason
would be that in Single-DB a real agent, which originally owns multiple lo-
cal variables, fails to make better use of the knowledge of its local problem. By
introducing additional virtual agents and distributing its multiple local vari-
ables so that each resulting agent will have one variable, a real agent obtains
the applicability of Single-DB but loses quick access to the knowledge of its
local problem. This increases the amount of communication among the agents
and thus Single-DB results in deteriorated performance.

Recently, some researchers have investigated the distributed stochastic algo-
rithm (DSA) [5,6,28]. In DSA, agents sometimes act incoherently in such a
way that at a certain probability each agent i makes a local change without
caring the possibility that its local change would conflict with those of neigh-
boring agents. Among some variations of DSA, Fitzpatrick and Meertens have
reported that the CFP algorithm shows the best performance on satisfiable
instances of the distributed k-coloring problem [6]. In CFP, each agent acts
as follows. It first randomly chooses an assignment for its variable and sends
the assignment to its neighbors. Then, it repeats a sequence of steps until a
termination condition is met. Each agent collects the assignments of neighbors
at each step; if there are constraint violations, with probability α the agent
chooses an assignment giving the largest cost reduction, and with probability
1−α it keeps its current assignment, after which the agent sends an assignment
to its neighbors if the assignment is new. Zhang and Xing show experimental
results to compare DSA and Single-DB on the distributed scan scheduling
problem, which can be formulated as the distributed graph coloring problem,
in terms of solution quality and communication cost [28]. Their conclusion is
that CFP is superior to Single-DB in terms of both solution quality and
communication cost. However, the distributed scan scheduling problem is an
optimization problem whose goal is to minimize the total weight of violated

27

Table 2
Success ratio on uniform random (Dis)3-SAT where n variables are divided by k
agents (Note: first 100 instances are tried in the n = 100 case)

CFP CFP CFP
n k α = 0.3 α = 0.5 α = 0.7

100 10 0.03 0.09 0.11
20 0.01 0.00 0.03

125 25 0.00 0.00 0.03
150 15 0.00 0.00 0.05

25 0.01 0.01 0.04
30 0.00 0.00 0.03

(soft) constraints. For a decision problem whose goal is to completely satisfy
all of the constraints, the conclusion must be different because CFP can reach
a sub-optimal solution very quickly but has no explicit technique for escaping
from local minima. In fact, we adapted the CFP algorithm to the DisSAT
problem and tested its performance on some sets of instances in the uniform
random (Dis)3-SAT. Table 2 indicates the success ratios of the CFP algorithm
within the upper bound of 5000n cycles when we control α over 0.3, 0.5, and
0.7. From this, it is clear that the CFP algorithm rarely reaches a solution.
Recall that the success ratio of Multi-DB++ is 1 in all cases.

7 Conclusions

We have presented the distributed breakout algorithms along with four im-
plementations: Single-DB, Multi-DB, Multi-DB+, and Multi-DB++.
Single-DB is a distributed breakout algorithm for solving the DisCSP, where
each agent has only one local variable and its related constraints. Multi-
DB, on the other hand, is another distributed breakout algorithm for solving
the DisSAT problem, where each agent has multiple local variables and their
related clauses. Multi-DB+ and Multi-DB++ are stochastic variations of
Multi-DB, where we introduce random break to Multi-DB to make Multi-
DB+ and random walk to Multi-DB+ to make Multi-DB++. According
to our experimental evaluation, Single-DB, Multi-DB, and Multi-DB+

scale up better but show very poor performance in a few cases. On the other
hand, Multi-DB++, which uses random walk, shows remarkable performance
improvement.

References

[1] A. Armstrong, E. Durfee, Dynamic prioritization of complex agents in
distributed constraint satisfaction problems, in: Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, 1997, pp. 620–625.

28

[2] R. J. Bayardo Jr., R. C. Schrag, Using CSP look-back techniques to solve real-
world SAT instances, in: Proceedings of the Fourteenth National Conference on
Artificial Intelligence, 1997, pp. 203–208.

[3] C. Bessière, A. Maestre, P. Meseguer, Distributed dynamic backtracking, in:
Proceedings of the IJCAI-01 Workshop on Distributed Constraint Reasoning,
2001, pp. 9–16.

[4] S. E. Conry, K. Kuwabara, V. R. Lesser, R. A. Meyer, Multistage negotiation
for distributed constraint satisfaction, IEEE Transactions on Systems, Man and
Cybernetics 21 (6) (1991) 1462–1477.

[5] M. Fabiunke, Parallel distributed constraint satisfaction, in: Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, 1999, pp. 1585–1591.

[6] S. Fitzpatrick, L. Meertens, An experimental assessment of a stochastic,
anytime, decentralized, soft colourer for sparse graphs, in: Proceedings of the
First Symposium on Stochastic Algorithms: Foundations and Applications,
2001, pp. 49–64.

[7] J. Gu, Efficient local search for very large-scale satisfiability problems, Sigart
Bulletin 3 (1) (1992) 8–12.

[8] K. Hirayama, M. Yokoo, The effect of nogood learning in distributed constraint
satisfaction, in: Proceedings of the 20th IEEE International Conference on
Distributed Computing Systems, 2000, pp. 169–177.

[9] K. Hirayama, M. Yokoo, Local search for distributed SAT with complex
local problems, in: Proceedings of the First International Joint Conference on
Autonomous Agents & Multi-Agent Systems, 2002, pp. 1199–1206.

[10] H. H. Hoos, On the run-time behaviour of stochastic local search algorithms
for SAT, in: Proceedings of the Sixteenth National Conference on Artificial
Intelligence, 1999, pp. 661–666.

[11] M. N. Huhns, D. M. Bridgeland, Multiagent truth maintenance, IEEE
Transactions on Systems, Man and Cybernetics 21 (6) (1991) 1437–1445.

[12] H. A. Kautz, B. Selman, Pushing the envelope: Planning, propositional logic,
and stochastic search, in: Proceedings of the Thirteenth National Conference
on Artificial Intelligence, 1996, pp. 1194–1201.

[13] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[14] C. Mason, R. Johnson, DATMS: A framework for distributed assumption based
reasoning, in: L. Gasser, M. Huhns (Eds.), Distributed Artificial Intelligence,
Vol. 2, Morgan Kaufmann, 1989, pp. 293–318.

[15] S. Minton, M. D. Johnston, A. B. Philips, P. Laird, Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems,
Artificial Intelligence 58 (1–3) (1992) 161–205.

29

[16] P. Morris, The breakout method for escaping from local minima, in: Proceedings
of the Eleventh National Conference on Artificial Intelligence, 1993, pp. 40–45.

[17] B. Selman, H. Levesque, D. Mitchell, A new method for solving hard
satisfiability problems, in: Proceedings of the Tenth National Conference on
Artificial Intelligence, 1992, pp. 440–446.

[18] B. Selman, H. A. Kautz, B. Cohen, Noise strategies for improving local search,
in: Proceedings of the Twelfth National Conference on Artificial Intelligence,
1994, pp. 337–343.

[19] Y. Shang, B. W. Wah, A Discrete Lagrangian-Based Global-Search Method
for Solving Satisfiability Problems, Journal of Global Optimization 12 (1998)
61–99.

[20] M. C. Silaghi, D. Sam-Haroud, B. Faltings, Asynchronous search with
aggregations, in: Proceedings of the Seventeenth National Conference on
Artificial Intelligence, 2000, pp. 917–922.

[21] K. P. Sycara, S. Roth, N. Sadeh, M. Fox, Distributed constrained heuristic
search, IEEE Transactions on Systems, Man and Cybernetics 21 (6) (1991)
1446–1461.

[22] W. E. Walsh, M. Yokoo, K. Hirayama, M. P. Wellman, On market-inspired
approaches to propositional satisfiability, in: Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, 2001, pp. 1152–1158.

[23] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara, Distributed constraint
satisfaction for formalizing distributed problem solving, in: Proceedings of the
12th IEEE International Conference on Distributed Computing Systems, 1992,
pp. 614–621.

[24] M. Yokoo, K. Hirayama, Distributed breakout algorithm for solving distributed
constraint satisfaction problems, in: Proceedings of the Second International
Conference on Multi-Agent Systems, 1996, pp. 401–408.

[25] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara, The distributed constraint
satisfaction problem: formalization and algorithms, IEEE Transactions on
Knowledge and Data Engineering 10 (5) (1998) 673–685.

[26] M. Yokoo, K. Hirayama, Distributed constraint satisfaction algorithm for
complex local problems, in: Proceedings of the Third International Conference
on Multi-Agent Systems, 1998, pp. 372–379.

[27] W. Zhang, L. Wittenburg, Distributed breakout revisited, in: Proceedings of
the Eighteenth National Conference on Artificial Intelligence, 2002.

[28] W. Zhang, Z. Xing, Distributed breakout vs. distributed stochastic: A
comparative evaluation on scan scheduling, in: Proceedings of the Third
International Workshop on Distributed Constraint Reasoning, 2002, pp. 192–
201.

30

