
Local Search for Distributed SAT with Complex Local
Problems

Katsutoshi Hirayama
Kobe University of Mercantile Marine

5-1-1 Fukae-minami-machi, Higashinada-ku
Kobe 658-0022, JAPAN

hirayama@ti.kshosen.ac.jp

Makoto Yokoo
NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun
Kyoto 619-0237, JAPAN

yokoo@cslab.kecl.ntt.co.jp

ABSTRACT
A distributed constraint satisfaction problem(DisCSP) is a
general framework that can formalize various application
problems in Multi-Agent Systems. The authors have devel-
oped a series of algorithms for solving DisCSPs, including
an iterative improvement algorithm called the distributed
breakout (DB) algorithm. This algorithm, however, deals
only with DisCSPs where each agent has exactly one lo-
cal variable and the relevant constraints to the variable. In
this paper, we propose a new algorithm called Multi-DB
for solving distributed SAT (DisSAT) where each agent has
multiple local variables and the relevant clauses to the vari-
ables. We conduct an experiment to compare Multi-DB
with the previous algorithm called Multi-AWC on well-
known (Dis)3-SAT benchmarks. The results are very im-
pressive since Multi-DB has much less average communi-
cation and computation costs for almost all cases (at least
an order of magnitude less for larger problems). We also
identify a trade-off between communication and computa-
tion costs of algorithms when we vary the degree of decen-
tralization.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Coher-
ence and coordination, Multiagent systems

General Terms
Algorithms

Keywords
distributed constraint satisfaction, propositional satisfiabil-
ity, local search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

1. INTRODUCTION
Distributed constraint satisfaction problems (DisCSPs)

are constraint satisfaction problems (CSPs) where variables
and constraints are distributed among multiple agents. Since
many problems in Multi-Agent Systems (MAS) can be de-
scribed as DisCSPs, a lot of studies have been made on al-
gorithms for DisCSPs [2, 5, 12, 13, 17], complexity issues on
DisCSPs [4, 7], mapping real-life MAS problems into DisC-
SPs [9], etc., over the past several years.

Previous distributed constraint satisfaction algorithms can
be roughly divided into two groups. One is characterized by
asynchronism in the value assignment to variables. This
group includes the asynchronous backtracking (ABT) algo-
rithm [14], the asynchronous weak-commitment search (AWC)
algorithm [14] and its descendants [5, 16, 6, 12]. In these al-
gorithms, agents decide the values to their variables without
mutually excluding their “undesirable” simultaneous deci-
sions. The other group is characterized by local-synchronism
in the value assignment to variables. One representative al-
gorithm in this group is the distributed breakout (DB) al-
gorithm [15]. Unlike ABT or AWC, agents in DB mutually
exclude undesirable simultaneous decisions only among their
neighboring agents.

In ABT and AWC, nogood learning plays an important
role in the search performance. By making each agent record
a nogood, which is a new constraint discovered by an agent,
both ABT and AWC are guaranteed to be complete, and
moreover, the communication cost of AWC can be reduced
even by partial nogood learning [6]. However, when solving
critically hard DisCSPs, both algorithms are likely to pro-
duce a huge number of nogoods and some agents may hence
consume a lot of memory to record these nogoods. This
problem can be serious especially when agents have to solve
a DisCSP instance where each agent is assigned a large and
complex local problem while being permitted to use only a
limited amount of memory.

On the other hand, since DB can solve hard DisCSPs
even without a memory consumptive method like nogood
learning, DB is more appropriate for situations where an
agent is permitted to use only a limited amount of memory.
However, DB is restricted to DisCSPs where each agent has
one local variable and its relevant constraints, and hence is
unable to deal with DisCSPs where each agent has multiple
local variables.

We present a new algorithm called Multi-DB, where DB
is extended so that it can handle problems where each agent
has multiple local variables. Multi-DB is adapted for Dis-



tributed SAT, which is an important class of DisCSPs where
variables and clauses of a propositional formula in conjunc-
tive normal form are distributed among multiple agents.
The outline of the search process in Multi-DB is as follows.
Each agent repeats (until a solution is found): performing a
local search procedure (a variant of WalkSAT [11]) to find
more preferable values to its variables; exchanging the possi-
ble “flips” (a flip means a change of value from true to false
or vice-versa) for the variables among neighboring agents;
resolving conflicts among these possible flips; flipping the
variables whose flips are permitted; and exchanging new val-
ues to its variables among neighboring agents.

This paper is organized as follows. We first give the back-
ground of this research, which consists of the definition of
DisCSP/DisSAT and the outline of DB in Section 2. Then,
in Section 3, we present our new algorithm called Multi-DB
along with the basic idea and the detailed description of the
procedure. Simple examples follow to illustrate the perfor-
mance of the procedure. Next, in Section 4, we show experi-
mental evaluations using well-known benchmark (Dis)3-SAT
problems and discuss the results. Finally, we conclude this
work in Section 5.

2. BACKGROUND

2.1 Distributed CSP/SAT
Propositional satisfiability (SAT) is the problem of decid-

ing if there is an assignment for variables in a propositional
formula that makes the formula true. SAT has attracted
considerable attention recently within the AI community.
In the field of AI planning in particular, efficient planning
algorithms have been developed under the scheme of SAT-
based planning where a planning problem is compiled into
a propositional formula in conjunctive normal form (CNF
formula) and solved by an efficient SAT solver [8]. A CNF
formula is a conjunction of clauses, where a clause is a dis-
junction of literals and a literal is a propositional variable
or its negation. The following formula over the variables
{x1, x2, x3, x4, x5, x6} is an example of a CNF formula.

(x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x6) ∧ (x2 ∨ ¬x4 ∨ ¬x5)

∧(x3 ∨ x5 ∨ x6) ∧ (¬x4 ∨ ¬x5 ∨ x6) (1)

Distributed SAT (DisSAT) is a problem where variables
and clauses in a CNF formula are distributed among mul-
tiple agents. We believe that many MAS problems can be
compiled into DisSAT since we have observed so many cen-
tralized problems can be compiled into SAT. Furthermore,
it is important to develop an efficient algorithm on a for-
mal model of MAS problems such as DisCSP/DisSAT, since
the existence of an efficient algorithm may encourage us to
compile a MAS problem into that formal model.

The DisSAT we deal with in this paper is as follows:

Component: a set of agents: 1, 2, . . . , k, where each is
assigned a set of variables and clauses.

Variable assignment rule: variables are partitioned into
all agents, i.e., no variable is shared among agents.

Clause assignment rule: a clause is assigned to all of
the agents involved with the clause. In other words,
an agent has all of the clauses relevant to its assigned
variables.

Solution: the state where every agent finds truth values
to its assigned variables that satisfy all of its assigned
clauses.

Take CNF formula (1), for example. This formula con-
sists of six variables and five clauses (we refer to them as
C1, C2, C3, C4, C5 from the left). If there exist two agents,
say a1 and a2, where each is assigned {x1, x2, x3} and {x4,
x5, x6}, respectively, then the above rules says that a1 has
{C1, C2, C3, C4} while a2 has {C2, C3, C4, C5}. In this case,
{C2, C3, C4} are assigned to both agents because each of
them includes both agents’ variables. Clauses that include
the variables of multiple agents, such as C2, C3, and C4,
are called inter-agent clauses. On the other hand, clauses
that include only the variables of one agent, such as C1 and
C5, are called intra-agent clauses. An agent (say i) usually
has both inter- and intra-agent clauses and each of i’s inter-
agent clauses includes some external variables that belong
to other agents. We call agents that i’s external variables
belong to i’s neighboring agents. We refer to the set of all
of i’s neighboring agents as i’s neighbors.

2.2 Distributed Breakout
DB is a distributed constraint satisfaction algorithm for

solving DisCSPs where each agent has exactly one local vari-
able. The outline of DB is as follows [15].

Each agent (say i) first assigns a randomly chosen value
to its variable and sends the value to its neighbors via ok
messages. Upon receiving ok messages from all of its neigh-
bors, i measures the weighted sum of violated constraints
for the current value to its variable (eval) and the maximal
possible improvement if i changes the current value to an-
other value (improve); i then sends both eval and improve
to its neighbors via improve messages.

Upon receiving improve messages from all of its neigh-
bors, i changes the current value to its variable to the value
that gives the maximum possible improvement and sends ok
messages if no neighboring agent has a larger improve than
i’s improve (ties are broken in favor of the agent with the
smaller ID); on the other hand, i keeps the current value
and sends ok messages if at least one agent among its neigh-
bors has a larger improve. By this simple mutual exclusion
using improve, no two neighboring agents change the val-
ues to their variables simultaneously, and the total weighted
sum of violated constraints over the agents is consistently
reduced by any value change as a result.

In the above process, i checks if the following three con-
ditions hold: 1) i’s eval> 0, 2) i’s improve= 0, and 3) no
neighboring agent has a positive improve. If these hold, i
identifies itself to be in a quasi-local-minimum and increases
the weight of the constraints violated at that time. This is
based on the breakout strategy [10] for centralized CSPs.

DB is an incomplete algorithm, i.e., it never finds the fact
that a DisCSP instance has no solution and may fail to find a
solution even if one solution exists. In many cases, however,
DB finds a solution to a satisfiable DisCSP instance very
quickly [15]. Furthermore, DB is not memory consumptive
because an agent simply requires a memory assignment to
record an originally given problem (i.e., a variable with a do-
main and constraints with weights) and some state variables
used in the procedure.



3. MULTIPLE LOCAL VARIABLES
DISTRIBUTED BREAKOUT

3.1 Basic Idea
We extend DB so that it can handle DisSAT instances

where each agent has multiple local variables and call the
resultant algorithm Multi-DB. The behavior of Multi-DB
is basically similar to that of DB, but in Multi-DB the
following ideas are introduced in order to efficiently solve
DisSAT instances with multiple local variables.

Local search by an agent: In DB, an agent just selects
the value from its variable’s domain that gives the
maximal possible improvement in the weighted sum
of violated constraints. In Multi-DB, however, since
an agent has multiple local variables, an agent has to
search for a combination of values to its variables that
gives a possible improvement in the weighted sum of
violated constraints. The search space is usually much
larger than the domain of one local variable. We there-
fore adopt a local search method for an agent to find
such a combination of values. We use various well-
known techniques for the local search method (random
flip, sideway move, tabu list) as well.

Mutual exclusion allowing more simultaneous flips:
When an agent in DB changes the value to its variable,
all of its neighbors are prohibited from changing the
values to their variables. For DisSAT with multiple lo-
cal variables, we can make two neighboring agents flip
their variables simultaneously while ensuring that the
total weighted sum of violated clauses over the agents
is reduced by these flips. In Multi-DB, we introduce
a new mutual exclusion method that enables agents
to perform such simultaneous flips even among their
neighboring agents.

Restart: In DB, once agents start their search processes
with randomly chosen initial values to their variables,
they commit to these initial values and never cut off
their search processes to restart. In Multi-DB, we in-
troduce a restart mechanism where agents can restart
their search processes with new randomly chosen val-
ues if a solution to a DisSAT instance has not been
found within the predetermined upper bound.

3.2 Detail
Figure 1-5 describe a set of procedures for Multi-DB.

Below, we give the details of each procedure. We first show
the meanings of the global parameters and state variables
used in these procedures. The global parameters used in
these procedures are as follows. Note that the values of
these parameters are commonly known to all agents.

Maxtries: the maximal number of tries. At each try, an
agent (re)starts its search process with randomly cho-
sen initial values to its variables.

Maxrounds: the maximal number of times to perform a
series of procedures Wait ok and Wait improve at
each try. We regard performing one series of Wait ok
and Wait improve as one unit and call it a round.

Maxflips: the maximal number of flips we allow an agent
to perform at one call of the procedure Send ok or
Send improve.

procedure Multi-DB
(01) Neighborsi := number of i’s neighbors;
(02) Tabu i :=null;
(03) for t := 1 to Maxtries do
(04) randomly determine Values i;
(05) set the weight of all clauses to 1;
(06) Newweight := null;
(07) send ok(i, Values i, Newweight) to neighbors;
(08) for r := 1 to Maxrounds do
(09) Wait ok;
(10) Wait improve;
(11) end
(12) end

Figure 1: Procedure Multi-DB

Maxdistance: the threshold for the termination counter.
When the counter Termination i of agent i increases
to reach the threshold, this indicates that a solution
of the DisSAT instance has been found [15]. It is suf-
ficient to set the threshold to the maximal distance d
(or more) of a graph where we regard each agent as
a node and the existence of an inter-agent clause be-
tween any two agents as an edge. If such a maximal
distance is not known, we can set the threshold to the
number of agents k since k > d.

δ: the increment in the weight of a clause by which an
agent increases the weight of a violated clause in a
quasi-local-minimum.

p: the noise parameter used in the local search procedure
(see 3.3).

TL: the size of the tabu list used in the local search pro-
cedure (see 3.3).

The state variables are given in the following. These are
used by each agent (say i) during the search process.

Valuesi: the values of i’s variables at the current round.

Nextvaluesi: the possible values of i’s variables at the
next round.

Currentview i: the values of i’s and its neighbors’ vari-
ables at the current round.

Nextviewi: the possible values of i’s and its neighbors’
variables at the next round.

Eval i: the weighted sum of i’s clauses violated under
Currentview i.

Improvei: the possible improvement in the weighted sum
of i’s violated clauses after the local search procedure
is performed under Currentview i.

Improveview i: the values of i’s and its neighbors’ Improve .

Terminationi: the counter used for detecting the fact that
a solution to a DisSAT instance has been found.

Consistenti: a boolean variable that is set false iff at least
one of i and its neighbors fails to get values to variables
such that the weighted sum of violated clauses is 0.

Neighborsi: the size of i’s neighbors.

Tabu i: i’s tabu list, which records the history of Valuesi

in the last TL rounds (see 3.3).



procedure Wait ok
(01) Counter := 0;
(02) Currentview i := Valuesi;
(03) Improveview i := null;
(04) Wait ok mode := TRUE;
(05) while Wait ok mode do
(06) when i received ok(j, Valuesj, Newweight ) do
(07) Counter := Counter + 1;
(08) add Valuesj to Currentview i;
(09) update the weights of clauses based on Newweight ;
(10) if Counter = Neighborsi then
(11) Send improve;
(12) Wait ok mode := FALSE;
(13) end
(14) end

Figure 2: Procedure Wait ok

procedure Send improve
(01) Eval i := weighted sum of i’s violated clauses under Currentview i;
(02) N := Eval i; Nextview i := Currentview i;
(03) if Eval i = 0 then
(04) Consistent i := TRUE;
(05) else
(06) Consistent i := FALSE; Terminationi := 0;
(07) T := Currentview i;
(08) for f = 1 to Maxflips do
(09) V := i’s variable selected by variable selection rule;
(10) T := T with V ’s value flipped;
(11) if i’s variable values in T /∈ Tabui then
(12) E := weighted sum of i’s violated clauses under T ;
(13) if E < N then
(14) N := E; Nextview i := T ;
(15) if E = N then
(16) update Nextview i by sideway rule;
(17) if E =0 then
(18) break;
(19) end
(20) Improvei := Eval i − N ;
(21) add Improvei to Improveview i;
(22) Nextvalues i := i’s variable values in Nextview i;
(23) Possflips := values in Nextvaluesi different from those in Valuesi;
(24) prohibit any other flips except for Possflips;
(25) send improve(i, Possflips, Improvei, Eval i, Terminationi) to neighbors;

Figure 3: Procedure Send improve

Figure 1 shows the main procedure called Multi-DB. In
this procedure, agent i randomly determines the initial val-
ues to its variables (Step 04), sets the initial weight of all
clauses to 1 (Step 05), and sends ok messages to its neighbors
(Step 07). Then, i repeats Wait ok and Wait improve un-
til the predetermined upper bound, Maxrounds, is reached
(Steps 08–11). All of the above steps are repeated Maxtries
times at most (Steps 03–12).

Figure 2 describes the Wait ok procedure. In this pro-
cedure, when agent i receives an ok message from agent j
(Step 06), i adds Valuesj to Currentview i (Step 08) and
updates the weights of its clauses based on Newweight if
Newweight includes new clause weights (Step 09). Upon re-
ceiving ok messages from all of its neighbors, i performs
Send improve and breaks the while loop (Steps 10–12).
Note that an ok message includes a sender’s ID (j), the val-
ues to the sender’s variables at the current round (Valuesj),
and the new weights of the sender’s clauses (Newweight).
The value of Newweight is null if a sender has not updated
its weights.

Figure 3 shows the Send improve procedure. In this pro-
cedure, agent i first measures the weighted sum of violated
clauses under Currentview i, Eval i (Step 01). If Eval i = 0, i
makes Consistent i true (Step 04), prohibits flips for all of its
variables at the current round (Step 24), and sends improve
messages to its neighbors (Step 25). On the other hand, if
Eval i �= 0, after making Consistent i false and Terminationi

zero (Step 06), i performs the local search procedure (Steps

procedure Wait improve
(01) Counter := 0;
(02) Wait improve mode := TRUE;
(03) while Wait improve mode do
(04) when i received improve(j, Possflips, Improvej, Eval j, Terminationj) do
(05) Counter := Counter + 1;
(06) Terminationi := min(Termination i, Terminationj);
(07) update Nextview i by Possflips;
(08) add Improvej to Improveview i;
(09) if Eval j > 0 then
(10) Consistent i := FALSE;
(11) if Counter = Neighborsi then
(12) Send ok;
(13) Wait improve mode := FALSE;
(14) end
(15) end

Figure 4: Procedure Wait improve

07–19). The procedure provides the possible values to i’s
variables that gives an improvement in the weighted sum of
i’s violated clauses (Step 22). The possible values may re-
quire some flips for i’s variables, and hence i identifies these
flips as Possflips (Step 23) and prohibits other flips for its
variables, i.e., flips not required at the current round (Step
24). Then, i sends these possible flips (Possflips), the pos-
sible improvement in the weighted sum of violated clauses
(Improvei), Eval i, and Terminationi to its neighbors via
improve messages (Step 25).

Figure 4 describes the Wait improve procedure. In this
procedure, when agent i receives an improve message from
agent j, i updates Termination i (Step 06), Nextview i (Step
07), and Improveview i (Step 08), as shown in the figure;
and makes Consistent i false if Eval j (the weighted sum of
j’s violated clauses at the current round) is larger than zero
(Step 10). Upon receiving improve messages from all of its
neighbors, i performs Send ok and breaks the while loop
(Step 11–13).

Figure 5 shows the Send ok procedure. In Send ok, if
Consistent i has not been made false, i increases Terminationi

by one (Step 03) and sends ok messages to its neighbors
(Step 41). As we showed in [15], if Termination i reaches
Maxdistance by this increment, this indicates that a solution
to a DisSAT instance has been found, and consequently, i
sends notification of this fact and can terminate (Steps 04–
06).

On the other hand, if Consistent i has been made false,
Send ok branches out in one of two directions depending on
whether there exists at least one agent that can flip variables
among i and its neighbors.

In one direction, where no agent among i and its neighbors
can flip its variables (Step 08), i increases the weight of each
clause violated under Currentview i by δ (Step 10); if a clause
whose weight is increased is an inter-agent clause then i adds
the clause and its new weight into Newweight to send to its
neighboring agents who share the same clause (Steps 11, 12).

In the other direction, where some agents among i and
its neighbors can flip their variables, i proceeds as follows.
For each clause not violated at the current round but pos-
sibly violated at the next round (Step 15), i identifies the
flips (Culprit flips) causing the possible violation at the next
round (Step 16) and the agents (Culprit ag) planning to per-
form those flips (Step 17); and checks if the following three
conditions hold (Step 18): 1) i is responsible for the possible
violation, 2) the possible violation is caused by at least two
agents, and 3) i has the least Improvei among Culprit ag
(ties are broken in favor of the agent with the larger ID). If



procedure Send ok
(01) Newweight := null;
(02) if Consistent i then
(03) Terminationi := Terminationi + 1;
(04) if Terminationi = Maxdistance then
(05) broadcast that a solution has been found;
(06) terminate all procedures;
(07) else
(08) if Nextview i = Currentview i then
(09) for each violated clause C under Currentview i do
(10) increase the weight of C by δ;
(11) if C is an inter-agent clause then
(12) add the pair of C and its new weight to Newweight ;
(13) end
(14) else
(15) for each clause not violated under Currentview i but violated under Nextview i do
(16) Culprit flips := flips causing such violation;
(17) Culprit ag := agents planning to perform Culprit flips;
(18) if (i ∈ Culprit ag) ∧ (|Culprit ag | ≥ 2)

∧ (i has the least Improvei among Culprit ag) then
(19) withdraw one of i’s flips in Culprit flips;
(20) end
(21) if no possible flip is withdrawn then
(22) Values i := Nextvalues i;
(23) else
(24) T := Currentview i; N := Eval i; Nextview i := T ;
(25) for f = 1 to Maxflips do
(26) V := i’s flippable variable selected by variable selection rule;
(27) T := T with V ’s value flipped;
(28) if i’s variable values in T /∈ Tabui then
(29) E := weighted sum of i’s violated clauses under T ;
(30) if E < N then
(31) N := E; Nextview i := T ;
(32) if E = N then
(33) update Nextview i by sideway rule;
(34) if E =0 then
(35) break;
(36) end
(37) Values i := i’s variable values in Nextview i;
(38) if |Tabui| = TL then
(39) delete the oldest element in Tabui;
(40) add Valuesi to Tabu i;
(41) send ok(i, Values i, Newweight ) to neighbors;

Figure 5: Procedure Send ok

the first two conditions were to hold, the clause would be
accidentally violated at the next round by simultaneous flips
over multiple agents, and the total weighted sum of violated
clauses over the agents would consequently increase at the
next round. To avoid this, an agent that meets the third
condition withdraws one of its flips in Culprit flips (Step
19) (ties are broken randomly), and thereby ensures that
the total weighted sum of violated clauses over the agents
decreases when the flips are performed.

In the above procedure (Steps 15–20), i sometimes with-
draws a part of its possible flips. However, when no possi-
ble flip is withdrawn, i can perform all of its possible flips
without increasing the total weighted sum of the violated
clauses over the agents. In this case, i performs the flips
(Step 22) and sends ok messages to its neighbors (Step 41).
On the other hand, by withdrawing some flips, can i perform
the other possible flips that are not withdrawn without in-
creasing the total weighted sum of violated clauses over the
agents? The answer is unfortunately no. All flips among
possible flips are usually interdependent. Even if possible
flips as a whole can reduce the weighted sum of violated
clauses, a part of the possible flips may increase the weighted
sum of violated clauses. Therefore, i must perform the local
search procedure again (Steps 24–36) using only the flip-
pable variables that are not prohibited (Step 24 in Figure
3) or withdrawn (Step 19). The flips obtained from this
“backup” local search procedure obviously do not increase
the total weighted sum of violated clauses over the agents,
and i can therefore perform these flips immediately (Step
37).

3.3 Local Search Techniques
In Multi-DB, an agent performs the local search proce-

dure in Send improve (Step 07–19 in Figure 3) and Send ok
(Step 24–36 in Figure 5). We describe the techniques used
in the local search procedure.

Variable selection rule For agent i to select a variable
to flip (Step 09 in Figure 3, Step 26 in Figure 5), we
use a technique like WalkSAT [11], where i randomly
picks up one violated clause; and selects one of i’s vari-
ables whose flip causes no new clause violations (breaks
ties randomly); if such a variable does not exist in the
clause, it randomly selects one of i’s variables from the
clause with probability p; otherwise, it selects one of
i’s variables whose flip minimizes the weighted sum of
newly violated clauses (breaks ties randomly). Note
that, in Send ok, since agent i can flip only flippable
variables (variables whose flips are not prohibited or
withdrawn), i randomly picks up one violated clause
including flippable variables first and follows the same
procedure.

Sideway rule If two sets of values to variables have the
same weighted sum of violated clauses, agent i chooses
the one with the larger hamming distance from the
values at the current round (Step 16 in Figure 3, Step
33 in Figure 5).

Tabu list Agent i maintains a tabu list that records the
history of Valuesi in the last TL rounds and does not
select values to its variables in the tabu list.

3.4 Simple Example
Using the DisSAT instance in Section 2, we provide sim-

ple execution examples. As we mentioned before, for CNF
formula (1) we assume that agent a1 is assigned {x1, x2, x3}
and {C1, C2, C3, C4} while agent a2 is assigned {x4, x5, x6}
and {C2, C3, C4, C5}.

In the first scenario, both agents initially determine the
values to their variables as follows:

x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 0

and send ok messages to each other. Upon receiving an ok
message, agent a1 knows that the weighted sum of violated
clauses, C3, is 1, discovers through the local search proce-
dure that {x1 = 1, x2 = 1, x3 = 0} makes the weighted sum
of violated clauses zero, and sends a2 an improve message
including {x1 = 1, x2 = 1} as possible flips. Agent a2, on the
other hand, knows that the weighted sum of violated clauses,
C3 and C5, is 2, discovers that {x4 = 0, x5 = 1, x6 = 0}
makes the weighted sum of violated clauses zero, and sends
a1 an improve message including {x4 = 0} as a possible flip.
Upon receiving the improve message, agent a1 finds that its
possible flips {x1 = 1, x2 = 1} never cause accidental clause
violations at the next round and performs these flips. Agent
a2, on the other hand, performs its possible flip x4 = 0 in a
similar way. Consequently, the values to their variables at
the next round are:

x1 = 1, x2 = 1, x3 = 0, x4 = 0, x5 = 1, x6 = 0

This is a solution to this DisSAT instance.
In the second scenario, both agents start with:

x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0



Agent a1 evaluates the weighted sum of violated clauses, C4,
as 1 and realizes that flipping x3 leads to no violation. Agent
a2 also evaluates the weighted sum of violated clauses, C4,
as 1 and realizes that flipping x6 leads to no violation. Then,
both agents exchange improve messages and discover that
C2 is not currently violated but might be violated at the
next round by these flips. In this case, a1 flips x3, while a2

withdraws the flip of x6 since a2 meets the three conditions
in Send ok (Note: although both agent have the same Im-
prove, a2 has a larger ID than a1). Consequently, the values
to their variables at the next round are:

x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 0

This is another solution to this DisSAT instance.

4. EVALUATION
We evaluated the performance of Multi-DB through an

experiment using the uniform random 3-SAT in SATLIB1.
The uniform random 3-SAT is generally considered to be
one of the hardest classes of 3-SAT. It has been widely
used to evaluate the performance of SAT solvers. A no-
table feature of this problem is that it includes “unforced
and filtered” satisfiable instances. To generate satisfiable in-
stances, it is important to generate instances randomly and
filter unsatisfiable instances. A method like forcing an in-
stance to have a particular solution generally produces much
easier instances [1]. For the conversion of a SAT instance
into a DisSAT instance, we evenly partitioned n variables of
a SAT instance among k agents and assigned each clause to
all agents having variables in the clause.

We compared Multi-DB with Multi-AWC [16]. Multi-
AWC is one of the most efficient algorithms for solving DisC-
SPs with multiple local variables. Multi-AWC can employ
nogood learning to reduce its communication cost. How-
ever, as we mentioned in Section 1, complete nogood learn-
ing sometimes demands huge memory resources and even
partial nogood learning cannot avoid relatively high mem-
ory consumption. This can be problematic especially when
agents have to solve a DisCSP instance where each agent
is assigned a large and complex local problem while being
permitted to use only a limited amount of memory. Ac-
cordingly, the Multi-AWC used in this experiment did not
employ nogood learning on the assumption that agents can-
not demand extra memory during the search process.

We used a simulator of a fully synchronous distributed sys-
tem. This is a typical distributed system, where all agents
(nodes) repeat computation and communication simultane-
ously using a simulated global clock. On this simulator,
we implemented Multi-DB and Multi-AWC and measured
the following as their communication and computation costs,
respectively.

cycles: the number of cycles consumed until the agents find
one solution. One cycle consists of a series of simul-
taneous computation and communication events. In
other words, every agent receives all incoming mes-
sages, performs local computation, and sends all mes-
sages in one cycle. This measure can be considered as
the communication cost of an algorithm. Note that
one round in Multi-DB, in which agents perform one

1http://aida.intellektik.informatik.tu-darmstadt.de
/SATLIB/benchm.html

series of Wait ok and Wait improve, corresponds to
two cycles on this simulator.

flips: the total sum of the maximal number of flips over
the agents in each cycle until the agents find one solu-
tion. More specifically, in each cycle, we identify the
bottleneck agent, which performed the most flips for
its local computation, and sum up all of the maximal
numbers of flips over all consumed cycles. Although
the amount of computation in each cycle varies among
the agents, the total amount of computation is domi-
nated by the bottleneck agents. This measure can be
thus considered as the computation cost of an algo-
rithm. Note that for Multi-AWC, we measured the
number of visited search nodes instead of the number
of flips.

We set the upper bound of the number of cycles to 500n
and cut off a run if it exceeds the upper bound in order to
finish our experiment in a reasonable amount of time. For
a run cut off, we used the data from the cycles and flips at
that time.

The global parameters in Multi-DB were set as follows:
Maxtries=1, Maxrounds= 250n, Maxflips= n/k, δ = 1, p =
0.3, TL = 3 (when n = 20, 50, 75), and TL = 5 (when
n = 100, 125, 150). We did not set Maxdistance because
in this experiment both Multi-DB and Multi-AWC are
terminated immediately once all of the agents find a solution
to a DisSAT instance.

Table 1 shows the results. In the uniform random 3-SAT
in SATLIB, there are 100 instances for each n (1000 in-
stances for n = 50, 100). We gave randomly chosen initial
values to variables once for each instance of each combina-
tion of (n, k) and made each method run. This table in-
dicates the average/median cycles and the average/median
flips over 100 (or 1000) runs for each combination of (n, k).
It also indicates the ratio of runs that were successfully com-
pleted within the upper bound of the number of cycles (suc-
cess ratio).

As Table 1 indicates, Multi-DB is better than Multi-
AWC in all cases in terms of both the average and median
flips and in all cases for n ≥ 75 in terms of both the av-
erage and median cycles. Moreover, the differences become
greater as n increases. We would like to stress that when
n = 150, Multi-DB has at least an order of magnitude less
average/median cycles and average/median flips at every k.
Furthermore, the success ratio of Multi-DB gets better re-
sults in all cases.

Another trend we can observe is that for each n, the aver-
age/median cycles (communication cost) increases as k (the
number of agents) increases, while the average/median flips
(computation cost) decreases as k increases. These are true
for both Multi-DB and Multi-AWC. The trade-off be-
tween the communication and computation costs when we
vary the degree of decentralization seems to be independent
of algorithm.

Although Multi-DB has better success ratios than Multi-
AWC in all cases, it unfortunately fails to complete a small
number of runs for n ≥ 100. One of the most simple ways of
avoiding such a “heavy-tailed cost distribution” is to intro-
duce some randomization technique including restarts [3].
Table 2 shows results for Multi-DB with restarts (Max-
tries=25, Maxrounds= 10n, and the others are unchanged).
As this table indicates, some heavy-tailed cost distributions



Table 1: Performance of Multi-DB and Multi-AWC on uniform random (Dis)3-SAT with n variables by k
agents

Average Median Average Median Success
Method n k cycles cycles flips flips ratio

Multi-DB 20 2 3.52 × 101 2.00 × 101 1.78 × 102 1.00 × 102 1.00
4 5.60 × 101 3.40 × 101 1.45 × 102 8.70 × 101 1.00

50 2 2.05 × 102 8.20 × 101 2.81 × 103 1.09 × 103 1.000
5 2.74 × 102 1.32 × 102 1.52 × 103 7.50 × 102 1.000

10 3.67 × 102 1.68 × 102 9.62 × 102 4.51 × 102 1.000
75 3 6.87 × 102 2.32 × 102 9.61 × 103 3.30 × 103 1.00

5 8.41 × 102 3.52 × 102 7.06 × 103 3.03 × 103 1.00
15 1.07 × 103 3.92 × 102 2.75 × 103 1.03 × 103 1.00

100 2 8.68 × 102 3.32 × 102 2.41 × 104 9.25 × 103 1.000
4 1.53 × 103 4.68 × 102 2.13 × 104 6.86 × 103 0.996
5 1.92 × 103 5.70 × 102 2.11 × 104 6.67 × 103 0.993

10 2.78 × 103 1.15 × 103 1.48 × 104 6.44 × 103 0.989
20 3.58 × 103 1.38 × 103 9.10 × 103 3.58 × 103 0.977

125 5 3.90 × 103 1.30 × 103 5.34 × 104 1.91 × 104 0.99
25 8.27 × 103 1.82 × 103 2.08 × 104 4.67 × 103 0.93

150 3 3.98 × 103 8.28 × 102 1.09 × 105 2.43 × 104 0.98
5 6.67 × 103 8.58 × 102 1.08 × 105 1.57 × 104 0.96

10 8.20 × 103 2.40 × 103 6.49 × 104 2.02 × 104 0.97
15 9.54 × 103 2.44 × 103 4.93 × 104 1.38 × 104 0.96

Multi-AWC 20 2 3.04 × 101 1.30 × 101 7.48 × 102 3.00 × 102 1.00
4 3.55 × 101 2.00 × 101 3.55 × 102 1.96 × 102 1.00

50 2 1.07 × 102 5.50 × 101 1.05 × 104 5.04 × 103 1.000
5 2.94 × 102 1.33 × 102 7.13 × 103 3.07 × 103 1.000

10 3.60 × 102 1.44 × 102 3.85 × 103 1.55 × 103 1.000
75 3 8.79 × 102 2.92 × 102 7.78 × 104 2.50 × 104 1.00

5 1.80 × 103 5.56 × 102 7.64 × 104 2.31 × 104 0.99
15 1.60 × 103 6.60 × 102 1.81 × 104 7.68 × 103 1.00

100 2 1.39 × 103 4.36 × 102 4.52 × 105 1.33 × 105 0.999
4 4.69 × 103 1.33 × 103 4.12 × 105 1.13 × 105 0.987
5 6.10 × 103 1.73 × 103 3.87 × 105 1.05 × 105 0.976

10 7.63 × 103 2.27 × 103 1.99 × 105 5.77 × 104 0.968
20 8.49 × 103 2.68 × 103 9.84 × 104 3.09 × 104 0.950

125 5 1.92 × 104 9.29 × 103 1.72 × 106 8.12 × 105 0.87
25 2.55 × 104 1.58 × 104 3.04 × 105 1.88 × 105 0.80

150 3 2.43 × 104 1.11 × 104 6.47 × 106 2.90 × 106 0.81
5 3.71 × 104 2.61 × 104 4.37 × 106 2.90 × 106 0.67

10 3.94 × 104 3.60 × 104 1.79 × 106 1.63 × 106 0.61
15 4.23 × 104 4.17 × 104 1.16 × 106 1.15 × 106 0.61

Table 2: Performance of Multi-DB with restarts on uniform random (Dis)3-SAT with n variables by k agents
Average Median Average Median Success

Method n k cycles cycles flips flips ratio
Multi-DB 100 2 8.86 × 102 3.46 × 102 2.50 × 104 9.85 × 103 0.999

with restarts 4 1.39 × 103 5.10 × 102 2.04 × 104 7.38 × 103 1.000
5 1.64 × 103 5.70 × 102 1.93 × 104 6.85 × 103 1.000

10 3.23 × 103 1.15 × 103 1.82 × 104 6.48 × 103 0.996
20 3.48 × 103 1.39 × 103 9.03 × 103 3.63 × 103 0.997

125 5 2.54 × 103 8.16 × 102 3.79 × 104 1.22 × 104 1.00
25 6.30 × 103 2.33 × 103 1.63 × 104 6.00 × 103 1.00

150 3 2.18 × 103 6.08 × 102 6.42 × 104 1.78 × 104 1.00
5 3.23 × 103 1.20 × 103 5.84 × 104 2.14 × 104 1.00

10 9.03 × 103 2.09 × 103 8.04 × 104 1.75 × 104 0.96
15 9.85 × 103 3.85 × 103 5.56 × 104 2.15 × 105 0.98



are eliminated by the simple restart strategy. However, a few
runs still remain to be completed for some combinations of
(n, k).

In this experiment, we did not use nogood learning for
Multi-AWC since we assumed that memory resources are
so tight that agents cannot demand extra memory during
search. If the situation was different, i.e., agents had enough
memory to perform nogood learning for Multi-AWC, we
might not get such significant results since the performance
of Multi-AWC can be improved by nogood learning (at the
expense of memory to record nogoods and time to check no-
goods). This means that the conclusion from our experimen-
tal results may be restricted to the situation where memory
resources are tight. However, we believe that such a situa-
tion is not unusual.

5. CONCLUSIONS
This paper described Multi-DB for solving DisSAT where

an agent has multiple local variables and relevant clauses
to the variables. In Multi-DB, agents repeat the follow-
ing steps: perform a local search procedure to find possible
flips able to reduce the weighted sum of violated clauses; ex-
change these possible flips; resolve conflicts by withdrawing
a part of the possible flips that increase the total weighted
sum of violated clauses over the agents; perform the permit-
ted flips; and exchange new values to their variables.

Our experimental results on well-known (Dis)3-SAT bench-
marks indicate that for larger problems Multi-DB has at
least an order of magnitude lower average communication
and computation costs than Multi-AWC with no learning.
This means that Multi-DB performs very well even when
agents are permitted to use only a limited amount of mem-
ory. Through the experiment, we also identified a trade-off
between the communication and computation costs of algo-
rithms when we vary the degree of decentralization.

6. REFERENCES
[1] D. Achlioptas, C. Gomes, H. A. Kautz, and

B. Selman. Generating satisfiable problem instances.
In Proceedings of the Seventeenth National Conference
on Artificial Intelligence, pages 256–261, 2000.

[2] A. Armstrong and E. Durfee. Dynamic prioritization
of complex agents in distributed constraint
satisfaction problems. In Proceedings of the Fifteenth
International Joint Conference on Artificial
Intelligence, pages 620–625, 1997.

[3] C. P. Gomes, B. Selman, and H. Kautz. Boosting
combinatorial search through randomization. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence, pages 431–437, 1998.

[4] Y. Hamadi. Optimal distributed arc-consistency. In
Proceedings of the Fifth International Conference on
Principles and Practice of Constraint Programming,
pages 219–233, 1999.

[5] Y. Hamadi, C. Bessière, and J. Quinqueton.
Backtracking in distributed constraint networks. In
Proceedings of ECAI-98, pages 219–223, 1998.

[6] K. Hirayama and M. Yokoo. The effect of nogood
learning in distributed constraint satisfaction. In
Proceedings of the 20th IEEE International
Conference on Distributed Computing Systems, pages
169–177, 2000.

[7] K. Hirayama, M. Yokoo, and K. Sycara. The phase
transition in distributed constraint satisfaction
problems: First results. In Proceedings of the
International Workshop on Distributed Constraint
Satisfaction, 2000.

[8] H. A. Kautz and B. Selman. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 1194–1201, 1996.

[9] P. J. Modi, H. Jung, M. Tambe, W.-M. Shen, and
S. Kulkarni. A dynamic distributed constraint
satisfaction approach to resource allocation. In
Proceedings of the Seventh International Conference
on Principles and Practice of Constraint
Programming, pages 685–700, 2001.

[10] P. Morris. The breakout method for escaping from
local minima. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 40–45,
1993.

[11] B. Selman, H. A. Kautz, and B. Cohen. Noise
strategies for improving local search. In Proceedings of
the Twelfth National Conference on Artificial
Intelligence, pages 337–343, 1994.

[12] M. C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with aggregations. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 917–922, 2000.

[13] W. E. Walsh, M. Yokoo, K. Hirayama, and M. P.
Wellman. On market-inspired approaches to
propositional satisfiability. In Proceedings of the
Seventeenth International Joint Conference on
Artificial Intelligence, pages 1152–1158, 2001.

[14] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673–685,
1998.

[15] M. Yokoo and K. Hirayama. Distributed breakout
algorithm for solving distributed constraint
satisfaction problems. In Proceedings of the Second
International Conference on Multi-Agent Systems,
pages 401–408, 1996.

[16] M. Yokoo and K. Hirayama. Distributed constraint
satisfaction algorithm for complex local problems. In
Proceedings of the Third International Conference on
Multi-Agent Systems, pages 372–379, 1998.

[17] M. Yokoo and K. Hirayama. Algorithms for
distributed constraint satisfaction: A review.
Autonomous Agents and Multi-agent Systems,
3(2):189–211, 2000.


