
In Proceedings of First International Conference on Multiagent Systems (ICMAS-95), pp. 155{162

Forming Coalitions for Breaking Deadlocks

Katsutoshi Hirayama� and Jun'ichi Toyoda
ISIR, Osaka University

8{1 Mihogaoka
Ibaraki, Osaka 567, JAPAN

fhirayama, toyodag@ai.sanken.osaka-u.ac.jp

Abstract

When multiple agents solve their own problems
while they interact with each other, it is helpful
to form a coalition, which is a group of agents
working together. Previous approaches to coali-
tion formation have proposed to de�ne the utili-
ty of coalitions and to use a strategy that agents
form coalitions for getting higher utility. Howev-
er, in some problems, the utility of coalitions is
not easily obtainable because it might depend on
various uncertain things. This paper describes a
model of coalition formation where agents form
coalitions for breaking deadlocks. In this model,
agents solve Distributed Constraint Satisfaction
Problems with an iterative repair method, and
form coalitions when they get stuck at local min-
ima. This model is suggested to realize a new
approach to coalition formation. We also present
problem solving strategies in coalitions: the self-

ish and the altruistic. These two strategies di�er
in the way to build a domain of variables. From
our experimental results on distributed 3-coloring

problems, the altruistic group performed better
than the sel�sh group.

Introduction

Suppose that the environment where multiple agents
have their own local problems; there are some interac-
tions among their problems; and agents have a method
to communicate with each other. In such environment,
there may be many chances for cooperation among the
agents to coordinate their problem solving. It might
be one possibility for agents to cooperate with all other
agents so that the cooperation will bene�t all. That
cooperation, however, seems to be expensive because
the agents have to coordinate all their problem solving.
Thus it is more likely that agents form a coalition, a
subset of the agents working together, for bene�ting
only the members of the coalition.

�Corresponding author's current address: Facul-
ty of Mercantile Marine Science, Kobe University of
Mercantile Marine, 1{1, 5-chome, Fukae-Minami-machi,
Higashi-Nada-ku, Kobe 658 JAPAN. E-mail address:
hirayama@ti.kshosen.ac.jp

Although coalition formation is important strategy
for problem solving in multi-agent systems, it is a d-
i�cult problem how agents should form coalitions. In
previous approaches to this problem, they have pro-
posed to de�ne utility values that represent the bene-
�ts from forming coalitions, and to use a strategy that
agents form coalitions for getting higher utility (Ketch-
pel 1994, Zlotkin & Rosenschein 1994). The utility
values are given in advance so that problems can be
solved in game-theoretic manner. However, in some
problems, we consider that it is di�cult to get a cor-
rect estimate of the actual bene�t because it might
depend on various uncertain things.

Our approach is di�erent from the previous game-
theoretic ones. It is very simple, and does not need
to de�ne utility values or something. The key idea is
that agents should form coalitions when they come to
deadlocks. We call the deadlock the state where there
is no other way to improve the current state. Based
on this idea, we have developed a model where agents
solve Distributed CSP: Distributed Constraint Satis-
faction Problems (Yokoo et al. 1992). In this mod-
el agents solve their local problems with an iterative
repair method, which is a form of hill-climbing that
reduces the number of constraint violations (Minton
et al. 1992, Selman et al. 1992). Agents try to re-
duce the number of their own constraint violations, and
some agents may consequently get stuck at local mini-
ma. Agents at local minima have no way to reduce the
number of constraint violations. In the model agents
form coalitions for breaking local minima. By forming
coalitions, we mean that neighboring two agents in lo-
cal minima contract to make the constraints between
them consistent. Forming coalitions in this way leads
to �lling in local minima, i.e., preventing agents from
getting stuck at the same local minima repeatedly.

In this paper we describe the coalition formation
model in detail, and present two problem solving s-
trategies used in coalitions. One is the sel�sh. After
forming a coalition, the sel�sh coalition assigns its vari-
ables a set of values that may violate many constraints
being shared with others. The other strategy is the
altruistic. This coalition assigns its variables a set of

values that causes the smallest number of constraint
violations. While the sel�sh coalition can easily get
new assignments because all it has to do is to search
for one set of values that satis�es its local constraints,
the altruistic coalition has to have a hard time search-
ing for all possible sets of values. For evaluating these
strategies, we tested the sel�sh group and the altruistic
group on distributed 3-coloring problems. The results
show that the altruistic group worked better than the
sel�sh group.
This paper is organized as follows. To begin with we

provide a detail of the model. Next we present the two
strategies used in coalitions, and furthermore show ex-
perimental results for evaluating these strategies. Then
we also touch previous distributed constraint satisfac-
tion algorithms, and point out the di�erence between
our algorithm and previous ones. The �nal part of this
paper contains conclusions and future work.

The Model

This section describes the model using examples which
enable understanding the detail of it.

Distributed CSP

CSP can be stated as follows (Kumar 1992): We are
given a set of variables, a �nite and discrete domain for
each variable, and a set of constraints. Each constraint
is de�ned over some subset of the variables. The goal
is to �nd one set of (or all sets of) assignments to the
variables such that the assignments satisfy all the con-
straints.
In Distributed CSP each agent has variables, do-

mains, and constraints. The goal of each agent is to
�nd one set of assignments to its variables that satisfy
all the constraints. The constraint, however, is usually
de�ned over a set of variables including other agents'
variables. Accordingly, agents must communicate each
other to achieve their goals. We introduce the follow-
ing speci�cations of a communication model that can
be seen in (Yokoo et al. 1992):

� Communication between agents is done by sending
messages;

� One agent can send messages to another i� one of the
former's constraints is de�ned over a set of variables
including the latter's variables (we refer the latter
agent as the former's neighbor);

� The delay in delivering a message is �nite;

� Messages are received in the order in which they were
sent.

On the other hand, we assume the following without
loss of generality (Yokoo et al. 1992):

� Each agent has exactly one variable;

� Each constraint is binary, that is, it is de�ned over
two variables;

c24c13

c34

v1 ∈ [red, blue] v2 ∈ [green,blue]

v3 ∈ [red, green, blue] v4 ∈ [red, blue]

c14

Agent_1 Agent_2

Agent_3 Agent_4

Figure 1: A distributed graph coloring problem. vi is
a variable, and cij is a constraint that prohibits from
assigning the same value to vi and vj . This �gure in-
dicates that, for example, Agent 1 has v1 as a variable,
[red, blue] as a domain, and c13 and c14 as constraints.

� Each agent has all constraints relevant to its vari-
able.

In the above de�nition, we should notice that there is
no global control and no agent knows the entire prob-
lem. In Figure 1 we show a typical example of Dis-
tributed CSP: a distributed graph coloring problem. A
graph coloring problem consists of a graph and the re-
quirement to �nd a color for each node (from a set
of colors) such that no pair of adjacent nodes has the
same color. Nodes and arcs correspond to variables
and constraints, respectively. A distributed graph col-
oring problem can be considered to be a graph coloring
problem where the nodes in a graph are distributed a-
mong agents.

An Iterative Repair Method for Solving
Distributed CSP

A number of papers have presented algorithms using
an iterative repair method for solving CSP (Minton et
al. 1992, Selman et al. 1992, Morris 1993, Selman &
Kautz 1993). This method is a kind of local search,
which searches local area of problem space for a bet-
ter solution, and makes local changes of assignments
repeatedly. It works as follows:

1. Generate an initial \solution" containing constraint
violations;

2. Until the current \solution" is acceptable, improve it
by making local changes that reduce the total num-
ber of constraint violations.

While this method is very simple, it has made great
success on some problems, for instance, n-queens prob-
lems, graph coloring problems, and propositional sat-
is�ability problems.
In this subsection we present an iterative repair

method for solving Distributed CSP. The outline of this

c24c13

c34

v1 ∈ [red, blue] v2 ∈ [green,blue]

v3 ∈ [red, green, blue] v4 ∈ [red, blue]

c14

Agent_1 Agent_2

Agent_3 Agent_4

blue blue

red blue

Figure 2: Informing neighbors about current assign-
ments. Each agent informs its neighbors about the
current assignment by sending messages. This �gure
shows that, for example, Agent 1 sends messages to A-
gent 3 and Agent 4 which indicate that \v1 is blue".
Note that a dotted line shows a constraint violation,
and an arrow shows message passing between agents.

method is that agents repeatedly make local changes
to reduce the numbers of their own constraint viola-
tions while they mutually exclude neighbors' changes
through negotiations. Using an example in Figure 2 {
7 we explain how this method proceeds.

Informing neighbors about current assign-
ments. Agents pick out any values as initial assign-
ments, and inform their neighbors by sending mes-
sages. When the messages are received, agents con-
struct agent views, each of which is a list of the pair:
[neighbor's identi�er, neighbor's current assignment].

In Figure 2, Agent 1's agent view is as follows: [[A-
gent 3, v3 = red], [Agent 4, v4 = blue]].

Negotiations before local changes. Agents with
constraint violations start negotiations for local
changes by sending the current and smallest num-
bers of constraint violations. Agents will make local
changes i� all their neighbors approve of the changes.
One agent's (we call the agent A1) change is approved
by the other (we call the agent A2) in the case that:
(i) All of A2's constraints are satis�ed or (ii) A1's
change will reduce more number of constraint viola-
tions than A2's will. Comparing their identi�ers breaks
ties (i.e., when both agents' changes reduce the same,
A1's change is approved if A1's identi�er precedes A2's
in the alphabetical order).

In Figure 3 and 4, Agent 1, Agent 2 and Agent 4
start negotiations with their neighbors, and only A-
gent 2 is approved by all its neighbors. Consequently,
Agent 2 changes its assignment into green as in Figure
5. To reduce the number of messages, we have made
an additional condition for the agents that start nego-
tiations in the actual implementation.

Forming Coalitions

While one agent's local change has a good e�ect on
its own problem solving (in the sense that it reduces
the number of constraint violations), it may have bad
e�ects on other agents'. See Figure 5 for example.
This �gure represents the state after Agent 2's local
change. This change forces Agent 1 and Agent 4 to be
in the state where no local change reduces the current
number of constraint violations. We call the state a
local minimum. Agent 1 and Agent 4 get stuck at local
minima in Figure 5.

For breaking local minima, agents form coalitions
in our model. By forming coalitions, we mean that
agents contract to make the constraints among them
consistent. Neighboring two agents form a coalition
when (i) they are in local minima and (ii) they share a
violated constraint. Once some agents form a coalition,
they continue to perform iterative repair while keeping
their local constraints consistent. We will give details
of agents' behavior in a coalition in the next section.

For example in Figure 5, 6 and 7, Agent 1 and Agen-
t 4 form a coalition through negotiations for the right
to be the manager: the agent which organizes their lo-
cal problem solving (We will detail in the next section).
After that, the coalition continues to perform iterative
repair, keeping the constraint c14 consistent.

We should notice that forming coalitions like this has
an important e�ect. Coalitions, as mentioned above,
keep some constraints consistent once they are violated
at local minima. That implies the fact that agents �ll
in local minima by forming coalitions. In other words,
forming coalitions prevents agents from getting stuck
at the same local minima repeatedly.

Other Models

Previous studies on coalition formation assume that a-
gents estimate utility values that they will receive from
membership in coalitions, and they form coalitions for
getting higher utility (Ketchpel 1994, Zlotkin & Rosen-
schein 1994). This, however, drives us to the question
how agents get correct estimates of the utility of coali-
tions in advance. We consider that it is hard to obtain
those estimates for the problems like Distributed CSP,
because the costs of problem solving by agents or coali-
tions are greatly dependent on others' current and fu-
ture assignments. Our model suggests a new approach
to coalition formation where agents form coalitions for
breaking deadlocks instead of for getting higher utility.

Organization self-design in (Ishida et al. 1990) pro-
poses two operator: composition and decomposition.
Composition is an operation for forming groups, aim-
ing at saving hardware resources at the cost of the
bene�t from parallel execution. While this model uses
organizational statistics that represents the behavior
of the organization as a whole, agents in our model
form groups using no such global information.

c24c13

c34

v1 ∈ [red, blue] v2 ∈ [green,blue]

v3 ∈ [red, green, blue] v4 ∈ [red, blue]

c14

Agent_1 Agent_2

Agent_3 Agent_4

blue blue

red blue

Figure 3: Negotiations for local changes. By sending
the current and smallest numbers of constraint viola-
tions, agents (with constraint violations) start negoti-
ations for local changes. For example, Agent 2 sends a
message to Agent 4 which indicates that \# of current
violations = 1 and # of minimum violations = 0" in
this �gure. Agent 3 has no constraint violation, hence
sending no messages.

c24c13

c34

v1 ∈ [red, blue] v2 ∈ [green,blue]

v3 ∈ [red, green, blue] v4 ∈ [red, blue]

c14

Agent_1 Agent_2

Agent_3 Agent_4

blue blue

red blue

Figure 4: Results of negotiations for local changes. An
agent compares its current and smallest numbers of
constraint violations with the sender's, and decides on
whether to approve of the sender's change. In this
�gure, Agent 1 approves of Agent 4's change, whereas
Agent 2 does not. Agent 3 approves of both Agent 1's
and Agent 4's, and Agent 4 does only of Agent 2's.

c24c13

c34

v1 ∈ [red, blue] v2 ∈ [green,blue]

v3 ∈ [red, green, blue] v4 ∈ [red, blue]

c14

Agent_1 Agent_2

Agent_3 Agent_4

blue green

red blue

Figure 5: Negotiations for the right to be the manag-
er. The agents form a coalition when they are in local
minima and share a violated constraint. This �gure
shows that Agent 1 and Agent 4 are in local minima
and share a violated constraint c14. They start negoti-
ations for the right to be the manager of a coalition by
sending messages which indicate that: \# of current
violations = 1 and # of minimum violations = 1".

c24c13

c34

v1 ∈ [red, blue] v2 ∈ [green,blue]

v3 ∈ [red, green, blue] v4 ∈ [red, blue]

c14

Agent_1 Agent_2

Agent_3 Agent_4

blue green

red blue

Figure 6: Results of negotiations for the right to be
the manager. An Agent decides on whether to ap-
prove of the sender's right to be the manager in the
same manner used in negotiations for local changes.
In this �gure, Agent 1 does not approve of Agent 4's
right, whereas Agent 2 does. Agent 3 approves of both
Agent 1's and Agent 4's, and Agent 4 does of Agent 1's.

c24

c13

c34

v1 ∈ [red, blue]

v4 ∈ [red, blue]

c14

Agent_1 & Agent_4

blue

v2 ∈ [green,blue]

Agent_2

green

v3 ∈ [red, green, blue]

Agent_3

red

blue

Figure 7: Forming a coalition. An agent becomes the
manager of a coalition if all its neighbors approve of
that. In this �gure, Agent 1 becomes the manager of a
coalition, which consists of Agent 1 and Agent 4, with
its neighbors' approval.

Strategies in Coalitions

As describe earlier, members of a coalition are in the
contract that they make their local constraints consis-
tent. That is, they have to make local changes such
that their new assignments do not violate their local
constraints. It is a next problem how the members re-
alize that. In this paper, we assume a simple form of
problem solving: the manager gathers all variables, do-
mains, and constraints in a coalition, and solves their
local CSP using various strategies. The purpose of this
section is to present two strategies for the manager: the
sel�sh and the altruistic.

Strategy 1: the sel�sh

Right after forming a coalition, the sel�sh manager
searches for one set of possible values, and assigns it
to variables. The cost of the search is relatively low
since it only has to get one set of values that satis-
�es constraints among the variables. It, however, has
no consideration for the neighbors of the coalition be-
cause that set of assignments may violate many con-
straints with the neighbors. This strategy will succeed
when neighbors are able to repair constraint violations
immediately. When not, the manager is required to
search for any other sets of values. All sets of values
that have been obtained are kept as a new domain of
the variables.
Using a new domain, the manager performs iterative

repair such as follows:

Agent_1
Agent_2

Agent_3

Agent_4 & Agent_5

Agent_6

× × ○ ○ ○ ×

select one that causes the
smallest # of violations

assign

(b) The altruistic strategy

× × ○

assign

(a) The selfish strategy

Figure 8: The sel�sh and altruistic strategies. This
�gure illustrates the initial behaviors of the sel�sh and
altruistic managers. Note that the initial behavior is
the one which is performed until the manager �nds
initial assignments.

1. it counts the current number of constraint violations,
and searches for one set of values that reduces the
number of violations in the current domain;

2. if such a set exists, it starts a negotiation for a local
change, and if not, it searches for a new set that
reduces the number of violations in the unsearched
problem space instead of the current domain;

3. when such a new set is found, it negotiates for a
local change, and when not it does for forming a
new coalition (for the right to be the manager).

In short the manager builds a new domain of vari-
ables on demand, performing iterative repair.

Strategy 2: the altruistic

The altruistic manager is more self-sacri�cing. It
searches for all possible sets of values to variables, se-
lects one set that violates the smallest number of con-
straints with neighbors, and assigns it to the variables.
It has a hard time to search for all possible sets so that
the assignments may cause minimum constraint viola-
tions. We consider that this strategy works well when
the size of local CSP is relatively small.

the selfish group the altruistic group

step check message max success

50 304.8 530180.3 8465.0 17.49 58% 236.6 437372.4 5962.7 15.77 75%

40 271.8 411162.6 6205.4 16.65 77% 214.3 190506.9 4435.4 13.98 95%

30 210.5 68374.3 3769.1 11.24 100% 172.2 49207.2 2796.9 10.12 100%

20 136.8 7133.5 1795.1 6.86 100% 114.4 4956.7 1406.3 6.25 100%

10 59.5 639.1 507.3 2.50 100% 52.2 554.6 446.7 2.18 100%

n step check message max success

Table 1: Experimental results on distributed 3-coloring problems

It is simple for the manager to perform iterative re-
pair after forming a coalition. The manager searches
for all sets of values, and builds a complete domain
of variables before performing iterative repair (note:
the sel�sh manager builds a new domain on demand).
With this complete domain, the manager performs it-
erative repair in the same way as it does before forming
the coalition.
We show the initial behaviors of the sel�sh and al-

truistic managers in Figure 8.

Experiments

We assume two groups of agents: the sel�sh group and
the altruistic group, each of which uses an uniform s-
trategy. The sel�sh group consists of the agents that
use the sel�sh strategy, and on the other hand, the
altruistic group is a group of agents using the altru-
istic strategy. In this section, we present experimen-
tal results on the performance of the two groups when
they solved distributed 3-coloring problems. 3-coloring
problems are graph coloring problems where we need
to color each node using 3 di�erent colors. As report-
ed in (Adorf et al. 1990, Minton et al. 1992), an it-
erative repair method results in poor performance for
sparsely-connected graphs of 3-coloring problems. The
sparsely-connected graph consists of m arcs and n n-
odes, where m = 2n. We expect that an iterative re-
pair method will perform poorly (and agents will form
coalitions repeatedly) for those graphs of distributed
3-coloring problems. Hence we applied the sel�sh and
the altruistic groups to the sparsely-connected graph-
s, varying n from 10 to 50. For each n, we generated
10 problems using the method described in (Minton et
al. 1992), each of which has 10 trials with randomly
generated initial values.
These experiments were made on the simulator,

which is developed for realizing concurrent activity a-
mong agents. All settings of this simulator are same
as the one in (Yokoo 1993) in which each agent main-
tains its own simulated clock and sets it forward by
one simulated time unit whenever it performs one cy-

cle of computation (one cycle consists of reading all
messages, performing local computation, and sending
messages); a message issued at time t is available to
the recipient at time t + 1. For each trial, we mea-
sured the following required to reach the state where
all agents satisfy their constraints:

step : simulated time;

check : the total number of constraint checks;

message : the total number of messages.

At the time all agents satisfy their constraints, we
also measured:

max : max size of coalitions.

A bound of a million number of constraint checks
was employed so that the experiments could be �n-
ished in a reasonable amount of time. For each n, we
measured:

success : the percentage of trials �nished within the
bound.

If a group did not �nd a solution within the bound,
it stoped the trial, and kept the above data at that
time. The results are shown in Table 1. All �gures
(except ones in success column) are averaged over 100
trials for each n.
For all cases, the sel�sh group consumed more step-

s, checks, and messages. As stated in the previous
section, the sel�sh strategy could be e�cient if neigh-
bors repaired constraint violations immediately. That
corresponds to the case that agents fall in \shallow" lo-
cal minima. The sparsely-connected graphs, however,
have many \deep" local minima, and hence the sel�sh
group did not work well.
For large n, both groups formed very large coalitions.

The size of local CSP increases with coalition size, and
the altruistic group may hence be ine�cient. However
why did the sel�sh group perform so poorly for large
n? We should notice that agents formed larger coali-
tions in the sel�sh group than in the altruistic group.
The sel�sh strategy may violate more constraints, and

it is likely that these extra constraint violations cause
extra coalition formation. The sel�sh group can be in-
e�cient if the cost of extra coalition formation exceeds
the saving of the search cost in coalitions. It seems to
be for this reason that the sel�sh group showed poor
performance also for large n.

Distributed Constraint Satisfaction

Algorithms

We have considered our model to be a new approach
to coalition formation. In this section, we will focus on
another aspect of the model: a distributed constraint
satisfaction algorithm.

Previous Algorithms

The purpose of distributed constraint satisfaction al-
gorithms is to solve Distributed CSP e�ciently. As
distributed constraint satisfaction algorithms, Yokoo
has proposed two algorithms, which are called asyn-
chronous backtracking (Yokoo et al. 1992) and asyn-
chronous weak-commitment search (Yokoo 1993), re-
spectively.
Asynchronous backtracking is a complete algorith-

m in which agents change their assignments asyn-
chronously and concurrently while they exchange ok?
and nogood messages. (Note that a distributed con-
straint satisfaction algorithm is complete when follow-
ing conditions are ful�lled: agents eventually �nd their
solutions if there is at least one set of solutions; and
agents stop their process if there exsists no set of so-
lutions) By sending ok? messages, agents inform their
neighbors about their own current assignments. When
an agent receives an ok? message, it proceeds as fol-
lows:

1. updates its agent view;

2. checks whether its current assignment is consistent
with the agent view. The assignment is consisten-
t when satisfying all constraints being shared with
agents with higher priorities. Priority values are de-
�ned by using the alphabetical order of agents' iden-
ti�ers. An agent with a preceding identi�er in the
alphabetical order has higher priority;

3. if the current assignment is not consistent, selects a
new value which is consistent, assigns the value, and
sends ok? messages to neighbors. If the agent cannot
�nd such a new value, it makes a nogood, which is
a set of values that cannot be a part of any �nal
solutions, and sends the nogood as nogood messages
to neighbors. That corresponds to backtracking.

When an agent receives a nogood message, on the
other hand, the agent records the nogood as a new
constraint, changes its assignment to the value which
is consistent with the agent view, and sends ok? mes-
sages to its neighbors. If the agent cannot �nd a consis-
tent value, it makes another nogood to send its neigh-
bors.

Although asynchronous backtraking is the �rst dis-
tributed constraint satisfaction algorithm, it is not so
e�cient. For the increase of e�ciency, Yokoo has intro-
duced two heuristics into asynchronous backtracking,
and called the resultant algorithm asynchronous weak-
commitment search. One of the introduced heuristics
is min-con
ict heuristic (Minton et al. 1992): when se-
lecting a set of new values, an agent selects the one that
minimizes the number of con
icts. Another heuris-
tic is to change priority values of agents dynamically
whenever backtracking is occurred. According to ex-
perimental results on distributed n-queens problems
and network resource allocation problems, it has been
proved that these two heuristics dramatically improve
the perforance of asynchronous backtracking.

The Feature of Our Algorithm

In the previous algorithms agents change their assign-
ments asynchronously and concurrently, that is, they
do as soon as they �nd new values which are consisten-
t with their agent views. Consequently, neighboring
agents often change their assignments simultaneous-
ly without knowing each other's changes. We expect
that this property may have a bad in
uence on e�-
ciency. The algorithm which we have developed, on
the other hand, uses the negotiation procedure which
realizes that neighboring agents mutually exclude their
changes. Thereby it seems reasonable to suppose that
our algorithm may reduce the total number of assign-
ment changes. It, however, is debatable how many ex-
tra messages the negotiation procedure requires. We
ought to compare our algorithm with previous ones in
analytical/experimental manner as future work.

Conclusions
We described a new coalition formation model where
agents form coalitions for breaking deadlocks, and pre-
sented two strategies: the sel�sh and the altruistic, for
coalitions to solve their local problems. We then made
an experiment on the performance of the strategies,
and obtained the results which indicate that the sel�sh
strategy causes extra coalition formation, and thereby
performing poorly on distributed 3-coloring problems.
Finally, we give several possibilities of future work:

investigate when to break o� coalitions; investigate
other strategies of coalitions; and investigate the per-
formance of a group with heterogeneous strategies.

References
Adorf, H. M., and Johnston, M. D. 1990. A Dis-
crete Stochastic Neural Network Algorithm for Con-
straint Satisfaction Problems. In Proceedings of the
International Joint Conference on Neural Networks,
(III)917{924.

Ishida, T.; Yokoo, M.; and Gasser, L. 1990. An Orga-
nizational Approach to Adaptive Production System-
s. In Proceedings of the Eighth National Conference
on Arti�cial Intelligence, 52{58.

Ketchpel, S. 1994. Forming Coalitions in the Face of
Uncertain Rewards. In Proceedings of the Twelfth Na-
tional Conference on Arti�cial Intelligence, 414{419.

Kumar, V. 1992. Algorithms for Constraint Satisfac-
tion Problems: A Survey. AI magazine 13(1): 32{44.

Minton, S.; Johnston, M. D.; Philips, A. B.; and
Laird, P. 1992. Minimizing Con
icts: A Heuristic Re-
pair Method for Constraint Satisfaction and Schedul-
ing Problems. Arti�cial Intelligence 58: 161{205.

Morris, P. 1993. The Breakout Method for Escaping
from Local Minima. In Proceedings of the Eleventh
National Conference on Arti�cial Intelligence, 40{45.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
NewMethod for Solving Hard Satis�ability Problems.
In Proceedings of the Tenth National Conference on
Arti�cial Intelligence, 440{446.

Selman, B., and Kautz, H. 1993. Domain-
Independent Extensions to GSAT: Solving Large
Structured Satis�ability Problems. In Proceedings of
the 13th International Joint Conference on Arti�cial
Intelligence, 290{295.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara,
K. 1992. Distributed Constraint Satisfaction for For-
malizing Distributed Problem Solving. In Proceedings
of the Twelfth IEEE International Conference on Dis-
tributed Computing Systems, 614{621.

Yokoo, M. 1993. Dynamic Variable/Value Ordering
Heuristics for Solving Large-Scale Distributed Con-
straint Satisfaction Problems. In Proceedings of the
Twelfth International Workshop on Distributed Arti-
�cial Intelligence.

Zlotkin, G., and Rosenschein, J. S. 1994. Coalition,
Cryptography, and Stability: Mechanisms for Coali-
tion Formation in Task Oriented Domains. In Pro-
ceedings of the Twelfth National Conference on Arti-
�cial Intelligence, 432{437.

