
Dynamic SAT with Decision Change Costs: Formalization and Solutions

Daisuke Hatano and Katsutoshi Hirayama
Kobe University

5-1-1 Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
daisuke-hatano@stu.kobe-u.ac.jp, hirayama@maritime.kobe-u.ac.jp

Abstract

We address a dynamic decision problem in which
decision makers must pay some costs when they
change their decisions along the way. We formal-
ize this problem as Dynamic SAT (DynSAT) with
decision change costs, whose goal is to find a se-
quence of models that minimize the aggregation of
the costs for changing variables. We provide two
solutions to solve a specific case of this problem.
The first uses a Weighted Partial MaxSAT solver
after we encode the entire problem as a Weighted
Partial MaxSAT problem. The second solution,
which we believe is novel, uses the Lagrangian de-
composition technique that divides the entire prob-
lem into sub-problems, each of which can be sepa-
rately solved by an exact Weighted Partial MaxSAT
solver, and produces both lower and upper bounds
on the optimal in an anytime manner. To com-
pare the performance of these solvers, we experi-
mented on the random problem and the target track-
ing problem. The experimental results show that
a solver based on Lagrangian decomposition per-
forms better for the random problem and competi-
tively for the target tracking problem.

1 Introduction
With recent success in SAT solving, we observed a growing
need to extend SAT to deal with more sophisticated prob-
lems in the real world. Dynamic SAT (DynSAT)[Hoos and
O’Neill, 2000] is one such extension that aims to model the
dynamic nature of real problems. DynSAT can be considered
a special case of Dynamic CSP (DynCSP), which was orig-
inally proposed in[Dechter and Dechter, 1988]. In DynSAT
and DynCSP, we are given a sequence of problem instances
and required to solve it.

The solutions for DynCSP (including DynSAT) are largely
divided into two categories[Verfaillie and Jussien, 2005].
The first encompassesreactive approaches, which use no
knowledge about the possible directions of future changes.
Their goal is to find a solution for a new problem instance,
which was produced by changes in the current problem in-
stance. The key idea of reactive approaches is toreusesome-
thing. Bothsolution reuse[Verfaillie and Schiex, 1994] and

reasoning reuse[Bessìere, 1991; Schiex and Verfaillie, 1993]
are typical techniques in the literature.

The second encompassesproactive approaches, which
exploit all the knowledge they have about possible future
changes. With such knowledge, they have a chance to pro-
duce solutions that will resist those possible changes. Thero-
bust solution[Fargieret al., 1996; Wallace and Freuder, 1998;
Walsh, 2002] and theflexible solution[Bofill et al., 2010;
Freuder, 1991; Ginsberget al., 1998] are examples.

In this work, we address a dynamic decision problem
in which decision makers must pay some costs when they
change their decisions along the way. We can observe such
costs in real-life problems, such as the setup costs in planning
and scheduling. Suppose, for example, that you have to make
this month’s schedule for the hospital staff. You may have
information about possible future events, such as who is on
holiday or when a delicate surgery is planned. In the face of
such future events, an efficient schedule is required by which
day-to-day operations go smoothly and, more specifically, the
cost of arrangement is minimized. Even though the costs of
decision changes are widely observed in various dynamic de-
cision problems, little work has dealt with this issue in the
context of CSP or SAT.

One exception is a minimal-change solution for DynCSP
[Ranet al., 2002] that considers the cost of decision changes
as the number of variables that are assigned new values. Sim-
ilar approaches have also been proposed, including diverse
and similar solutions for CSP[Hebrardet al., 2005] and
distance-SAT, whose goals are to find a model that disagrees
with a given partial assignment on at most a specified number
of variables[Bailleux and Marquis, 2006]. Clearly, the main
concern of these works is a short-term reactive solution. On
the other hand, to our knowledge, a proactive solution has not
been fully investigated for a general decision problem with
the cost of decision changes.

We first introduce a dynamic SAT with decision change
costs. We restricted our attention to SAT, not CSP, as a deci-
sion problem because many efficient solvers and effective en-
coding methods already exist for SAT. The input of this prob-
lem is a sequence of SAT instances and the decision change
costs for the variables. The output is a sequence of mod-
els (solutions) that minimizes the aggregation of the costs for
changing variables. Obviously, this is one proactive approach
for DynSAT.

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pp.560-565



Then,we provide two solutions for a specific case of Dyn-
SAT with decision change costs. The first solution uses a
Weighted Partial MaxSAT (WPMaxSAT) solver after encod-
ing the entire problem as a WPMaxSAT problem. The second
solution, which we believe is novel, uses theLagrangian de-
compositiontechnique[Bertsekas, 1999] to devide the entire
problem into sub-problems, each of which can be separately
solved by an exact WPMaxSAT solver, and produces both
lower and upper bounds on the optimal in an anytime man-
ner.

The remainder of this paper is organized as follows. We
first define SAT and DynSAT in Section 2 and present a Dyn-
SAT with decision change costs in Section 3. Next, we de-
scribe two solutions for a specific case of DynSAT with de-
cision change costs in Section 4. Finally, we experimentally
evaluate the performance of various solvers, each of which is
based on either solution, and conclude this work in Sections
5 and 6.

2 SAT and Dynamic SAT
SAT is a decision problem whose goal is to decide whether
a givenCNF formulahas amodel. A CNF formula is a con-
junction ofclauses, where each clause is a disjunction oflit-
erals and a literal is a Boolean variable or its negation. A
truth assignment is a mapping from Boolean variables to truth
values, where we meantrue by 1 andfalse by 0, and a
model for a CNF formula is a truth assignment that makes the
formula true.

Dynamic SAT (DynSAT) is an extension of SAT that mod-
els the dynamic nature of real problems. Here, we define
DynSAT [Hoos and O’Neill, 2000]:

Definition 1 (DynSAT) An instance of a dynamic SAT is
given by(X,ϕ), whereX = {x1, . . . , xn} is a set of Boolean
variables, andϕ is a functionϕ : T → CNF(X), whereT
is a set of non-negative integers andCNF(X) is the set of all
possible CNF formulas that use only Boolean variables inX.

An instance of DynSAT forms an (infinite) sequence of CNF
formulas on the Boolean variables inX, where a CNF for-
mula at timet will be given by functionϕ.
k-stage DynSAT is a DynSAT that does not change after

fixed numberk of time steps.

Definition 2 (k-stage DynSAT) An instance ofk-stage dy-
namic SAT is given by(k,X, ϕ), where∀t ≥ k : ϕ(t) =
ϕ(k − 1).

Given an instance of DynSAT, our goal is to find a se-
quence of models. This task is calledmodel tracking[Hoos
and O’Neill, 2000].

3 Dynamic SAT with Decision Change Costs
Naturally when a model has changed over time, the decision
makers alter their decisions accordingly. We assume that if
they change their decisions in the real world, they must pay a
cost (such as the setup cost in planning and scheduling). We
generally call this thedecision change cost.

We define the cost for changing a variable at a certain time.

Definition 3 (cost for changing variable at a certain time)
The cost for changing variablexi at timet is given by func-
tion f : T\{0} ×X × {1, 0} × {1, 0} → R+, whereT is a
set of non-negative integers,X is a set of Boolean variables,
andR+ is a set of positive real numbers.

For example,f(t, xi, 1, 0) returns costci,t0 when we change
variablexi from 1 to 0 at timet. Similarly, f(t, xi, 0, 1) re-
turns costci,t1 when we change variablexi from 0 to 1 at time
t. Obviously, bothf(t, xi, 1, 1) andf(t, xi, 0, 0) must return
0 for anyxi and t, since there should be no cost when we
keep the same value for a variable.

Given two consecutive models,M(t−1) andM(t), we can
identify the cost for changing variablexi between these two
models, denoted bycost(xi,M(t − 1),M(t)), by referring
to the above cost function off . For example, given thatxi

is 1 inM(t − 1) but 0 inM(t), the value ofcost(xi,M(t −
1),M(t)) must bef(t, xi, 1, 0). By aggregating all of the
costs for variables with alocal aggregation operator⊕, we
can compute the cost for changing a model fromM(t− 1) to
M(t), which we will denote bycost(M(t− 1),M(t)):

cost(M(t− 1),M(t)) ≡
⊕
xi∈X

cost(xi,M(t− 1),M(t)).

For example, if⊕ is ′+′, we have

cost(M(t− 1),M(t)) ≡
∑
xi∈X

cost(xi,M(t− 1),M(t)).

Furthermore, letM be a sequence of models over a set of
non-negative integersT , i.e.,M = {M(t) | t ∈ T}. We can
define the cost of the sequence of modelsM by:

cost(M) ≡
⊙

t∈T\{0}

cost(M(t− 1),M(t)), (1)

where⊙ is a global aggregation operatorover the costs for
changing models. For example, if⊙ is ′+′, we have

cost(M) ≡
∑

t∈T\{0}

cost(M(t− 1),M(t)).

We can now define DynSAT with decision change costs.

Definition 4 (DynSAT with decision change costs)An in-
stance of dynamic SAT with decision change costs is given
by a 5-tuple(X,ϕ, f,⊕,⊙), whereX and ϕ are in Defini-
tion 1,f is in Definition 3, and⊕ and⊙ are local and global
aggregation operators, respectively.

As with the plain DynSAT, we can definek-stage DynSAT
with decision change costs as follows.

Definition 5 (k-stage DynSAT with decision change costs)
An instance ofk-stage dynamic SAT with decision change
costs is given by a 6-tuple(k,X, ϕ, f,⊕,⊙), where
∀t ≥ k : ϕ(t) = ϕ(k − 1).

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pp.560-565



Given an instance of (k-stage) DynSAT with decision
change costs, our goal is to find a sequence of models whose
cost, generally defined by (1), is minimized. We call this min-
imal cost theoptimal valuefor a (k-stage) DynSAT with de-
cision change costs. If the optimal value is finite, we refer to
the sequence of models that achieves the minimal cost as an
optimal solution.

4 Solutions
Among possible DynSATs with decision change costs, we fo-
cus on thek-stage problem specified by(k,X, ϕ, f,+,+),
which we believe is one natural setting. In this section, we
provide two solutions for it.

4.1 Weighted Partial MaxSAT Solving
In our first solution, we translate a given instance of
(k,X, ϕ, f,+,+) into a Weighted Partial MaxSAT (WP-
MaxSAT) problem instance and solve it using any WP-
MaxSAT solver. A WPMaxSAT problem instance comprises
hard clausesthat must be satisfied andsoft clausesthat can
be violated by paying some designated costs (calledweights).
The goal of WPMaxSAT solving is to find a truth assignment
that satisfies all hard clauses and minimizes a weighted sum
of the violated soft clauses.

The translation is as follows. For every clause of each CNF
formula ϕ(t), we introduce a hard clause with its Boolean
variables labeled byt. For example, clausex1 ∨ x2 of ϕ(2)
results in the hard clause ofx2

1 ∨ x2
2. Furthermore, for each

mapping defined byf , we introduce a soft clause that bridges
the same Boolean variables belonging to different times. For
example, the mapping off(2, x1, 0, 1) = 7, indicating that
we must pay a cost of 7 when changing variablex1 from 0 to
1 at time2, results in the soft clause ofx1

1 ∨¬x2
1 with weight

7. Generally,f(t, xi, 1, 0) = ci,t0 results in¬xt−1
i ∨ xt

i with
weight ci,t0 , while f(t, xi, 0, 1) = ci,t1 results inxt−1

i ∨ ¬xt
i

with weightci,t1 .

4.2 Lagrangian Decomposition
Our second solution uses theLagrangian decompositiontech-
nique[Bertsekas, 1999] that can provide both lower and up-
per bounds on the optimal value of the problem.

Decomposition
First, we translate the cost function off into the 0-
1 integer programming (IP) problem. Suppose we have
f(t, xi, 1, 0) = ci,t0 , f(t, xi, 0, 1) = ci,t1 , f(t, xi, 1, 1) = 0
andf(t, xi, 0, 0) = 0. These cost mappings can be achieved
by solving the following 0-1 IP problem:

min. ci,t0 yi,t0 + ci,t1 yi,t1

s. t. xt−1
i − xt

i − yi,t0 + yi,t1 = 0,

xt−1
i , xt

i, y
i,t
0 , yi,t1 ∈ {0, 1},

wherext−1
i andxt

i are variablexi at timest−1 andt, respec-
tively, and bothyi,t0 andyi,t1 are auxiliary 0-1 variables. For
example, assumingxt−1

i = 1 andxt
i = 0, the above prob-

lem hasci,t0 as its optimal value. Obviously, this translation is
applied to every combination ofxi andt.

Since we are dealing with the case where local and global
aggregation operators are additive, the entire problem of
(k,X, ϕ, f,+,+) can be represented as what we call aCNF-
included 0-1 integer programming problem, formalized as
follows:

P : min.
k−1∑
t=1

n∑
i=1

(ci,t0 yi,t0 + ci,t1 yi,t1 )

s. t. xt−1
i − xt

i − yi,t0 + yi,t1 = 0, (2)

i = 1, ..., n, t = 1, ..., k − 1,

ϕ(t), t = 0, ..., k − 1. (3)

Hereafter we omit the 0-1 constraints on the variables. Since
problemP has all of the CNF formulas (3) as constraints, a
feasible solution forP is a sequence of models. Furthermore,
the objective value of such a feasible solution is the total sum
of the costs for changing variables. Therefore, we can get an
optimal solution for the entire problem by solvingP, or more
specifically, by projecting an optimal solution forP onto the
variables ofxt

i.
Since solvingP is complex, we will relax this problem so

that it can be tractable. In this work, we produce aLagrangian
relaxation problemfor P by dualizingconstraints (2), each
of which is defined over the variables belonging to different
times:

L : L(µ) = min.
k−1∑
t=1

n∑
i=1

(ci,t0 yi,t0 + ci,t1 yi,t1 )

+

k−1∑
t=1

n∑
i=1

µi,t(xt−1
i − xt

i − yi,t0 + yi,t1 )

s. t. ϕ(t), t = 0, ..., k − 1,

whereµ is called aLagrange multiplier vector, each element
µi,t of which can take any real number. Furthermore, a simple
calculation reveals that this problem can be decomposed into
the followingk + 1 sub-problems:

Laux(µ) = min.
k−1∑
t=1

n∑
i=1

(ci,t0 − µi,t)yi,t0

+

k−1∑
t=1

n∑
i=1

(ci,t1 + µi,t)yi,t1 , (4)

L0(µ) = min.
n∑

i=1

µi,1x0
i , s. t. ϕ(0), (5)

and, for each timet from 1 tok − 2,

Lt(µ) = min.

n∑
i=1

(µi,t+1 − µi,t)xt
i, s. t. ϕ(t), (6)

and

Lk−1(µ) = min.
n∑

i=1

(−µi,k−1)xk−1
i , s. t. ϕ(k − 1). (7)

Note that each of these sub-problems is actually the WP-
MaxSAT problem. Furthermore, (4) is trivial because it con-
sists of only soft unit clauses on auxiliary variables, but each

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pp.560-565



of the other sub-problems consists of hard clauses inϕ(t) and
soft unit clauses on the variables of timet.

On the other hand, theLagrangian dual problemis for-
mally defined by

D : max. L(µ) s. t. µ ∈ ℜ,

whereL(µ) is the optimal value forL, which should vary on
µ. This is obviously an unconstrained maximization problem
over Lagrange multipliers. The value of the objective func-
tion of this Lagrangian dual problem is a lower bound on the
optimal value ofP. The decomposition ofL results in the
decomposition ofD, which produces

D : max. Laux(µ) +

k−1∑
t=0

Lt(µ) s. t. µ ∈ ℜ. (8)

Our procedure solves this (decomposed) Lagrangian dual
problem to search for the values of Lagrange multipliers that
give the highest objective, i.e., the highest lower bound on the
optimal value ofP. This lower bound is useful because it can
be exploited in a search algorithm forP. For specific values
to µ, we can compute a lower bound on the optimal value of
P by simply taking a total sum of the optimal values of the
sub-problems from (4) to (7).

Outline of Procedure
Here we describe the outline of our procedure that can pro-
vide both lower and upper bounds on the optimal value ofP
along with a feasible solution forP.

Step 1: Set every element inµ to 0.

Step 2: Solve all of the sub-problems from (4) to (7) using
an exact WPMaxSAT solver.

Step 3: Compute highest lower boundLB, lowest upper
boundUB, and feasible solutionM with the lowest upper
bound.

Step 4: If CanTerminate?then returnLB, UB, andM; other-
wise updateµ and go to Step 2.

Starting from Step 1, this procedure repeats Steps 2 through
4 until the termination condition is met. We refer to one iter-
ation from Steps 2 to 4 as around. Next, we focus on Steps 3
and 4.

Lower and Upper Bounding
As mentioned, we can compute a lower bound on the opti-
mal value ofP as a total sum of the optimal values of sub-
problems. We can also provide a feasible solution forP by
forcing some auxiliary variables to flip in their optimal so-
lutions so that they can satisfy each of the constraints (2)
that were relaxed to produce the Lagrangian relaxation prob-
lem. Such a feasible solution forP clearly provides an upper
bound on the optimal value ofP. Therefore, at each round,
we can compute both lower and upper bounds on the optimal
value ofP as well as a feasible solution forP. At Step 3 in
the procedure, we keep the best one among those found in the
previous rounds.

Termination
We have two ways to detect the fact that the procedure has
found an optimal solution forP. The first relies on the fol-
lowing theorem on the relation between the optimal solutions
for the sub-problems and the optimal solution forP.

Theorem 1 If all optimal solutions for the sub-problems
from (4) to (7) satisfy all of the constraints (2) that have been
relaxed, then these optimal solutions constitute an optimal
solution forP.

This is obvious because such optimal solutions provide not
only a lower bound but also an upper bound on the optimal
value ofP. Accordingly, we can terminate the procedure
when the optimal solutions for the sub-problems satisfy all
constraints (2).

The second one is straightforward. When a ”forced” feasi-
ble solution forP has the value of an objective function that
equalsLB, this feasible solution is optimal because bothLB
andUB now reach the same value. This fact can also be used
for terminating the procedure.

On the other hand, the procedure can also be terminated
anytime after performing at least one round. In that case, we
can get the best bounds and the best feasible solution found
so far.

Update Lagrange Multipliers
When an optimal solution forP is not found, we updateµ to
find a tighter lower bound on the optimal value ofP. This
involves a search algorithm for the Lagrangian dual problem.
We solve this problem with thesub-gradient ascentmethod
[Bertsekas, 1999]. Starting from the initial values toµ, this
method systematically produces a sequence of values to La-
grange multiplierµi,t as follows:

1. Computesub-gradient

Gi,t = xt−1
i − xt

i − yi,t0 + yi,t1 ,

for eachi andt, which is the LHS of the (2) or the co-
efficient forµi,t in the objective function ofL, using the
current optimal solutions for the sub-problems.

2. Updateµi,t for eachi andt as

µi,t ← µi,t +D ·Gi,t,

whereD, calledstep length, is typically computed by

D =
π(UB − LB)∑

i,t(G
i,t)2

,

in whichπ is a scalar parameter gradually reduced from
its initial value of 2.

This rule implies that we increase (decrease)µi,t if its coeffi-
cientGi,t in the objective function ofL is positive (negative),
hoping thatL(µ), a lower bound on the optimal value ofP,
increases in the next round.

Although the sub-gradient ascent method is quite simple,
it does not necessarily converge to an optimal solution forP.
If the termination condition is not met after convergence, we
only have a strict lower bound on the true optimal value ofP.

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pp.560-565



5 Experiments
We compared the performance of the following solvers, each
of which is based on one of the two solutions:

• Solvers based on Weighted Partial MaxSAT solving

SAT4J: an exact WPMaxSAT solver that uses SAT encod-
ing and a state-of-the-art SAT solver that works
better empirically for structured instances[Berre,
2010].

WMAX SATZ: an exact WPMaxSAT solver based on the
branch and bound method that works better empir-
ically for random instances[Li et al., 2007].

IROTS: an incomplete and stochastic WPMaxSAT solver
that enhances iterative local search with the tabu
list [Stützleet al., 2003].

• Solvers based on Lagrangian decomposition

LD: a Lagrangian decomposition method, where each sub-
problem is solved by SAT4J. A feasible solution is
identified at every round by forcing some auxiliary
variables to flip in the optimal solutions of the sub-
problems so that they can satisfy each of the relaxed
constraints.

LDIROTS: a Lagrangian decomposition method, where
each sub-problem is also solved by SAT4J. A feasi-
ble solution, on the other hand, is further improved
by starting from the one obtained by LD and run-
ning IROTS for a constant number of flips. This
further improvement is performed only when the
best lower bound is updated.

Given a certain time bound, our goal is to see how tight the
obtained bounds are. For time-critical dynamic applications,
this property should be crucial for any solvers. When a run is
cut off at a certain time bound, WPMaxSAT can provide only
an upper bound, but Lagrangian decomposition can provide
not only an upper bound but also a lower bound.

We solved the following two problems. The first is
the random problem, where we generated 30 instances of
(k,X, ϕ, f,+,+) for eachk ∈ {10, 15, . . . , 35} such that

• X is a set of Boolean variables of size 100,{x1, ..., x100};
• ϕ returns, for eacht, a CNF formula randomly se-

lected from the satisfiable instances ofuf100-430 in
SATLIB;

• f returns an integer, the cost for changing a variable at a
certain time, randomly selected from{1, 2, ..., 106}.

The second problem is the target tracking problem, where
25 sensor stations arranged on a grid with four sensors each
must track targets while satisfying the following three con-
straints: 1) if there is a target in one region, at least two sen-
sors should turn on; 2) if there is no target in one region, no
sensor turns on; 3) only one sensor turns on in a sensor sta-
tion. Given a snapshot of the targets, this problem can be for-
mulated as a SAT instance, where for each sensor, a variable
takes 1 when the sensor is on and 0 when the sensor is off.
Given also a series ofk snapshots that is a sample of possible
future moves of the targets, the problem can be formulated
as DynSAT. To minimize the numbers of switching sensors
from on to off and off to on, the problem can be formulated

as DynSAT with decision change costs. More specifically, 30
instances for eachk ∈ {10, 15, . . . , 35} were generated such
that

• X is a set of Boolean variables of size 100,{x1, ..., x100};
• ϕ returns, for eacht, a satisfiable CNF formula obtained

from a snapshot of reasonable moves of targets;
• f always returns the same integer,105.

As the performance measure, we used quality upper bound
UB/LB of a feasible solution found by each solver within
a specified time bound. Note thatLB is the highest lower
bound that has been found by LD or LDIROTS. Needless to
say, this quality upper bound should be closer to one. Each
run was made on an Intel Xeon X5460@3.16 GHz with 4
cores and 32 GB memory. The code was basically written
in Java and compiled with JDK 1.6.011 on RedHat Enter-
prise Linux 5 (64 bit). SAT4J and WMAX SATZ were down-
loaded from the authors’ web pages, and their latest ver-
sions were run with the default settings. IROTS was from
the UBCSAT version 1.1 and was run with the ’-w’ option.
Lagrangian decomposition fits parallel processing very well
because, onceµ is fixed to some specific values, the decom-
posed sub-problems are virtually independent. Therefore, we
exploited the a multi-core processor in our LD-based solvers
to allow sub-problems to be solved in parallel. Furthermore,
to make a fair comparison, we also exploited a multi-core
processor in other methods by performing portfolio type par-
allelization.

For the random problem, SAT4J, LD, and LDIROTS never
fail to find a feasible solution within a 5-minute time bound.
WMAX SATZ, on the other hand, sometimes fails and never
finds feasible solutions for sequences of size 35. WMAX SATZ
did not work well for these instances because each is actu-
ally a highly-structured MaxSAT instance being composed
of k random SAT instances sequentially connected through
soft clauses. IROTSnever found a feasible solution for anyk.
Only for the solvers that successfully found feasible solutions
within five minutes, we plotted the average quality upper
bounds in Figure 1(a), where thex-axis is sizek of a sequence
and they-axis is the average quality upper bounds. LD and
LDIROTS worked very well in these experiments. In Figure
1(b), for 30 sequences of size 35, we also plotted the aver-
age quality upper bounds when setting different time bounds
over 1, 5, 15, and 30 minutes. This figure clearly shows that,
even with increased time bounds, LD and LDIROTSstill out-
performed SAT4J. Other WPMaxSAT solvers, WMAX SATZ
and IROTS, still fail to find a feasible solution even with a
30-minute time bound.

For the target tracking problem, except for WMAX SATZ,
the solvers always found feasible solutions within the 5-
minute time bound. We plotted the average quality upper
bounds for those solvers in Figure 2(a). LDIROTS is com-
petitive with IROTS with all sizek’s. In Figure 2(b), for 30
sequences of size 35, we also plotted the average quality up-
per bounds when setting different time bounds over 1, 5, 15,
and 30 minutes. Even with increased time bounds, LD-based
solvers remain competitive with IROTS. The target tracking
problem generally has fewer hard clauses. For such problems,
a stochastic solver like IROTSmight work. However, looking

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pp.560-565



1 5 15 30
1

1.05

1.1

1.15

1.2

1.25

10 15 20 25 30 35
1

1.05

1.1

1.15

1.2
U

B
/L

B

Time bound

U
B

/L
B

(a) (b)

Figure1: (a) Quality upper bounds vs. size of sequences on
random problem (5-minute time bound). (b) Quality upper
bounds vs. time bounds on random problem (sequences of
size 35)

U
B

/L
B

Time bound

1

1.05

1.1

1.15

1.2

1.25

1.3

10 20 25 3515 30 15 301 5
1

1.05

1.1

1.15

1.2

1.25

U
B

/L
B

(a) (b)

Figure 2: (a) Quality upper bounds vs. size of sequences
on target tracking problem (5-minute time bound).(b) Quality
upper bounds vs. time bounds on target tracking problem
(sequences of size 35)

at the results for the random problem, its performance is far
from robust.

6 Conclusions
In this work, we provided a DynSAT with decision change
costs and two solutions, Weighted Partial MaxSAT solv-
ing and Lagrangian decomposition, for solving a specific
case of this problem. Among these solutions, only La-
grangian decomposition provided lower bounds for the prob-
lem. Furthermore, a solver based on Lagrangian decompo-
sition, LDIROTS, seems very promising since it worked very
well empirically to find a quality feasible solution even when
a time bound is tight. For dynamically changing problems,
this property is crucial.

References
[Bailleux and Marquis, 2006] Olivier Bailleux and Pierre

Marquis. Some computational aspects of distance-SAT.
Journal of Automated Reasoning, 37(4): 231–260, 2006.

[Berre, 2010] Daniel Le Berre and Anne Parrain. The Sat4j
library, release 2.2, system description.Journal on Sat-
isfiability, Boolean Modeling and Computation 7, pages
59–64, 2010.

[Bertsekas, 1999] Dimitri P. Bertsekas.Nonlinear Program-
ming. Athena Scientific, second edition, 1999.

[Bessìere, 1991] Christian Bessìere. Arc-consistency in dy-
namic constraint satisfaction problems.AAAI-91, pages
221–226, 1991.

[Bofill et al., 2010] Miquel Bofill, Didac Busquets and Ma-
teu Villaret. A Declarative Approach to Robust Weighted
Max-SAT. 12th Intl. ACM SIGPLAN Symposium on Prin-
ciples and Practice of Declarative Programming, pages
67–76, 2010.

[Dechter and Dechter, 1988] Rina Dechter and Avi Dechter.
Belief maintenance in dynamic constraint networks.
AAAI-88, pages 37–42, 1988.

[Fargieret al., 1996] Hélène Fargier, J́erôme Lang, and
Thomas Schiex. Mixed constraint satisfaction: a frame-
work for decision problems under incomplete knowledge.
AAAI-96, pages 175–180, 1996.

[Freuder, 1991] Eugene C. Freuder. Eliminating inter-
changeable values in constraint satisfaction problems.
AAAI-91, pages 227–233, 1991.

[Ginsberget al., 1998] Matthew L. Ginsberg, Andrew J.
Parkes, and Amitabha Roy. Supermodels and robustness.
AAAI-98, pages 334–339, 1998.

[Hebrardet al., 2005] Emmanuel Hebrard, Brahim Hnich,
Barry O’Sullivan, and Toby Walsh. Finding diverse and
similar solutions in constraint programming.AAAI-05,
pages 372–377, 2005.

[Hoos and O’Neill, 2000] Holger H. Hoos and Kevin
O’Neill. Stochastic local search methods for dynamic
SAT – an initial investigation. AAAI-00 Workshop:
Leveraging Probability and Uncertainty in Computation,
pages 22–26, 2000.

[Stützleet al., 2003] Thomas Sẗutzle, Kevin Smyth, Holger
H. Hoos. Iterated robust tabu search for MAX-SAT.AI-
03, pages 129–144, 2003.

[Li et al., 2007] Chu Min Li, Felip Manỳa, and Jordi Planes.
New inference rules for MAX-SAT.Journal of Artificial
Intelligence Research, 30: 321–359, 2007.

[Ranet al., 2002] Yongping Ran, Nico Roos, and Jaap
van den Herik. Approaches to find a near-minimal changes
solution for dynamic CSPs.CP-AI-OR-02, 2002.

[Schiex and Verfaillie, 1993] Thomas Schiex and Ǵerard
Verfaillie. Nogood recording for static and dynamic con-
straint satisfaction problems.ICTAI-93, pages 48–55,
1993.

[Verfaillie and Jussien, 2005] Gérard Verfaillie and Naren-
dra Jussien. Constraint solving in uncertain and dynamic
environments: A survey.Constraints, 10: 253–281, 2005.

[Verfaillie and Schiex, 1994] Gérard Verfaillie and Thomas
Schiex. Solution reuse in dynamic constraint satisfaction
problems.AAAI-94, pages 307–312, 1994.

[Wallace and Freuder, 1998] Richard J. Wallace and Eu-
gene C. Freuder. Stable solutions for dynamic constraint
satisfaction problems.CP-98, pages 447–461, 1998.

[Walsh, 2002] Toby Walsh. Stochastic constraint program-
ming. ECAI-02, pages 111–115, 2002.

Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pp.560-565




