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Abstract

We address a dynamic decision problem in which
decision makers must pay some costs when they
change their decisions along the way. We formal-
ize this problem as Dynamic SAT (DynSAT) with
decision change costs, whose goal is to find a se-
guence of models that minimize the aggregation of
the costs for changing variables. We provide two
solutions to solve a specific case of this problem.
The first uses a Weighted Partial MaxSAT solver
after we encode the entire problem as a Weighted
Partial MaxSAT problem. The second solution,
which we believe is novel, uses the Lagrangian de-
composition technique that divides the entire prob-
lem into sub-problems, each of which can be sepa-
rately solved by an exact Weighted Partial MaxSAT
solver, and produces both lower and upper bounds
on the optimal in an anytime manner. To com-
pare the performance of these solvers, we experi-
mented on the random problem and the target track-
ing problem. The experimental results show that
a solver based on Lagrangian decomposition per-
forms better for the random problem and competi-
tively for the target tracking problem.

Introduction

reasoning reusBessere, 1991; Schiex and Verfaillie, 1993
are typical techniques in the literature.

The second encompasspsoactive approacheswhich
exploit all the knowledge they have about possible future
changes. With such knowledge, they have a chance to pro-
duce solutions that will resist those possible changes.rdhe
bust solutior{ Fargieret al., 1996; Wallace and Freuder, 1998;
Walsh, 2002 and theflexible solution[Bofill et al., 2010;
Freuder, 1991; Ginsbewg al., 1998 are examples.

In this work, we address a dynamic decision problem
in which decision makers must pay some costs when they
change their decisions along the way. We can observe such
costs in real-life problems, such as the setup costs in planning
and scheduling. Suppose, for example, that you have to make
this month’s schedule for the hospital staff. You may have
information about possible future events, such as who is on
holiday or when a delicate surgery is planned. In the face of
such future events, an efficient schedule is required by which
day-to-day operations go smoothly and, more specifically, the
cost of arrangement is minimized. Even though the costs of
decision changes are widely observed in various dynamic de-
cision problems, little work has dealt with this issue in the
context of CSP or SAT.

One exception is a minimal-change solution for DynCSP
[Ranet al., 2002 that considers the cost of decision changes
as the number of variables that are assigned new values. Sim-
ilar approaches have also been proposed, including diverse

With recent success in SAT solving, we observed a growingind similar solutions for CSI{JHebrard et al,, 2005'and
need to extend SAT to deal with more sophisticated probdistance-SATwhose goals are to find a model that disagrees

lems in the real world. Dynamic SAT (DynSATiHoos and

with a given partial assignment on at most a specified number

O'Neill, 2000 is one such extension that aims to model theof variablegBailleux and Marquis, 2046 Clearly, the main

dynamic nature of real problems. DynSAT can be consideregoncern of these works is a short-term reactive solution. On
a special case of Dynamic CSP (DynCSP), which was origthe other hand, to our knowledge, a proactive solution has not
inally proposed ifDechter and Dechter, 19B8In DynSAT
and DynCSP, we are given a sequence of problem instancége cost of decision changes.
and required to solve it.

been fully investigated for a general decision problem with

We first introduce a dynamic SAT with decision change

The solutions for DynCSP (including DynSAT) are largely costs. We restricted our attention to SAT, not CSP, as a deci-
divided into two categorie§Verfaillie and Jussien, 2005 sion problem because many efficient solvers and effective en-
The first encompasseagactive approacheswhich use no coding methods already exist for SAT. The input of this prob-
knowledge about the possible directions of future changedem is a sequence of SAT instances and the decision change
Their goal is to find a solution for a new problem instance,costs for the variables. The output is a sequence of mod-
which was produced by changes in the current problem inels (solutions) that minimizes the aggregation of the costs for
stance. The key idea of reactive approachesisisesome- changing variables. Obviously, this is one proactive approach
thing. Bothsolution reusdVerfaillie and Schiex, 1994and  for DynSAT.
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Then,we provide two solutions for a specific case of Dyn- Definition 3 (cost for changing variable at a certain time)
SAT with decision change costs. The first solution uses &he cost for changing variable; at timet is given by func-
Weighted Partial MaxSAT (WPMaxSAT) solver after encod-tion f : T\{0} x X x {1,0} x {1,0} — R™*, whereT is a
ing the entire problem as a WPMaxSAT problem. The secondet of non-negative integer¥, is a set of Boolean variables,
solution, which we believe is novel, uses thagrangian de- andR™ is a set of positive real numbers.
compositiortechniqug Bertsekas, 19990 devide the entire ‘
problem into sub-problems, each of which can be separatelor example f(t, z;, 1, 0) returns costgt when we change
solved by an exact WPMaxSAT solver, and produces botlvariablez; from 1 to 0 at timet. Similarly, f(¢, z;,0,1) re-
lower and upper bounds on the optimal in an anytime many,ns costj’t when we change variable from 0'to 1 at time
ner. , , ] , t. Obviously, bothf (¢, x;,1,1) and f(t, z;,0,0) must return

The remainder of this paper is organized as follows. Wep for anyz; andt, since there should be no cost when we
first define SAT and DynSAT in Section 2 and present a Dynkeep the same value for a variable.

SAT with decision change costs in Section 3. Next, we de-  Gjyen two consecutive models/ (t—1) andM (t), we can

scribe two solutions for a specific case of DynSAT with de'identify the cost for changing variable between these two

cision change costs in Section 4. Finally, we experimentallyy,odels. denoted byost(xz;, M (t — 1), M(t)), by referring
evaluate the performance of various solvers, each of which ig; ihe a’bove cost functioﬁ of. For e>7<ample’ given that,

based on either solution, and conclude this work in Sectiong; 1 i, M(t — 1) but 0 in M (t), the value ofost(z;, M(t —

5and 6. 1), M(t)) must bef(t,z;,1,0). By aggregating all of the
. costs for variables with #cal aggregation operators, we
2 SAT and Dynamic SAT can compute the cost for changing a model frbhit — 1) to

SAT is a decision problem whose goal is to decide whethed/ (t), which we will denote by-ost(M (t — 1), M(t)):
a givenCNF formulahas amodel. A CNF formula is a con-
junction ofclauses, where each clause is a disjunctiolitof
erals and a literal is a Boolean variable or its negation. A cost(M(t — 1), M(t)) = @ cost(ws, M(t — 1), M(t)).
truth assignment is a mapping from Boolean variables to truth z;€X
values, where we mearue by 1 andfalse by 0, and a
model for a CNF formula is a truth assignment that makes th
formula true.

Dynamic SAT (DynSAT) is an extension of SAT that mod- cost(M(t — 1), M(t)) = Z cost(wi, M(t = 1), M(t)).
els the dynamic nature of real problems. Here, we define

DynSAT [Hoos and O'Neill, 200D Furthermore, lef\/ be a sequence of models over a set of
o i ) . non-negative integerE, i.e.,, M = {M(t) | t € T}. We can

Definition 1 (DynSAT) An instance of a dynamic SAT is define the cost of the sequence of modélsy:

given by(X, ¢), whereX = {x1,...,z,} is a set of Boolean

variables, andp is a function¢ : ' — CNF(X), whereT’ cost(M) = @ cost(M(t — 1), M(t)), 1)

is a set of non-negative integers a@F(X) is the set of all teT (0}

possible CNF formulas that use only Boolean variableX'in

gor example, iy is’+’, we have

z, €X

where® is aglobal aggregation operatoover the costs for

An instance of DynSAT forms an (infinite) sequence of CNFchanging models. For exampleifis '+, we have

formulas on the Boolean variables i, where a CNF for-
mula at timet will be given by functiong. _ _
k-stage DynSAT is a DynSAT that does not change after cost(M) = Z cost(M(t —1), M(t))-
fixed numberk of time steps. LT\ {0}
L . We can now define DynSAT with decision change costs.
Definition 2 (k-stage DynSAT) An instance ofi-stage dy-

namic SAT is given byk, X, ¢), wherevVt > k : ¢(t) = o ) . )
ok —1). Definition 4 (DynSAT with decision change costs)An in-

stance of dynamic SAT with decision change costs is given
Given an instance of DynSAT, our goal is to find a se-by a 5-tuple(X, ¢, f,®,®), where X and ¢ are in Defini-
quence of models. This task is calletbdel trackingHoos  tion 1, f is in Definition 3, ands and® are local and global
and O'Neill, 2000. aggregation operators, respectively.

3 Dynamic SAT with Decision Change Costs As with the plain DynSAT, we can defirestage DynSAT

Naturally when a model has changed over time, the decisio}ﬁ‘”th decision change costs as follows.

makers alter their decisions accordingly. We assume that if

they change their decisions in the real world, they must pay ®efinition 5 (k-stage DynSAT with decision change costs)

cost (such as the setup cost in planning and scheduling). We&n instance ofk-stage dynamic SAT with decision change

generally call this thelecision change cost costs is given by a 6-tupldk, X, ¢, f,®,®), where
We define the cost for changing a variable at a certain timevt > k : ¢(¢t) = ¢(k — 1).
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Given an instance of ¢ktage) DynSAT with decision Since we are dealing with the case where local and global
change costs, our goal is to find a sequence of models whosggregation operators are additive, the entire problem of
cost, generally defined by (1), is minimized. We call this min-(k, X, ¢, f, +, +) can be represented as what we callldF-
imal cost theoptimal valuefor a (k-stage) DynSAT with de- included 0-1 integer programming problerformalized as
cision change costs. If the optimal value is finite, we refer tofollows:

the sequence of models that achieves the minimal cost as an k-1 n
optimal solution P . min. Z Z(cg’tyé’t + chtybh
. t=1 i=1
4 Solutions st ol Tt =gl — bt 4yt =0, 2

Among possible DynSATs with decision change costs, we fo-
cus on thek-stage problem specified by, X, ¢, f, +, +),
which we believe is one natural setting. In this section, we o(t), t=0,..k—1 3)
provide two solutions for it. Hereafter we omit the 0-1 constraints on the variables. Since
. . . roblem® has all of the CNF formulas (3) as constraints, a
4.1 We_lghted P_artlal MaxSAT 50""”9 ) Feasible solution fofP is a sequence of mgjgels. Furthermore,
In our first solution, we translate a given instance ofthe objective value of such a feasible solution is the total sum
(k, X, 0, f,+,+) into a Weighted Partial MaxSAT (WP- of the costs for changing variables. Therefore, we can get an

MaxSAT) problem instance and solve it using any WP-gptimal solution for the entire problem by solvifity or more
MaxSAT solver. A WPMaxSAT problem instance comprisesspecifically, by projecting an optimal solution fr onto the

hard clauseshat must be satisfied arsbft clauseshat can  variables ofx!.

be violated by paying some designated costs (calleidhty. Since solvingP is complex, we will relax this problem so
The goal of WPMaxSAT solving is to find a truth assignmentthat it can be tractable. In this work, we produdssarangian
that satisfies all hard clauses and minimizes a weighted sumg|axation problenfor P by dualizing constraints (2), each

i=1,n, t=1,.,k—1,

of the violated soft clauses. of which is defined over the variables belonging to different
The translation is as follows. For every clause of each CNRjmes:
formula ¢(¢), we introduce a hard clause with its Boolean el n

variables labeled by. For example, clause; V x5 of ¢(2) . . it it at it

results in the hard clause of v z2. Furthermore, for each £ Lp) = min. ZIZ(CO v )

mapping defined by, we introduce a soft clause that bridges t_kil

the same Boolean variables belonging to different times. For - its -1 . it it
example, the mapping of(2,z;,0,1) = 7, indicating that + ZZ“ HlaT -y )
we must pay a cost of 7 when changing variabldrom 0O to
1 at time2, results in the soft clause of v -2 with weight s.t. @(t), t=0,...k-1,

7. Generally,f(t,z;,1,0) = cé’t results in-z! 1 v 2t with wherey is called aLagrange multiplier vector, each element
weightcgt, while f(t,7;,0,1) = cllvt results inz!~! v —at p't of which can take any real number. Furthermore, a simple

t=1 i=1

with weightci™. calculation reveals that this problem can be decomposed into

! the followingk + 1 sub-problems:
4.2 Lagrangian Decomposition el n
Our second solution uses thagrangian decompositictech- L% (1) = min. Z Z(C(ift _ Mi,t)yé,t
nique[Bertsekas, 199%hat can provide both lower and up- =1 im1
per bounds on the optimal value of the problem. b—1 n
Decomposition Y D (Gt (@)
First, we translate the cost function of into the O- t=1 i=1
1 integer programming (IP) problem Suppose we have o n o
Ftoai1,0) = &', f(t,2:,0,1) = &) f(t,2:,1,1) = 0 LO(p) = min. Y p"'a?d, st 4(0),  (5)
andf(t,z;,0,0) = 0. These cost mappings can be achieved _ i=1
by solving the following 0-1 IP problem: and, for each time from 1 tok — 2,

. ,t 1,1 ,t 1,1 n

min. ¢4 Yo +¢ Y . i i
2}/10 , ! yll L L'(y) = min. Z(,u AL izt st @(t),  (6)
s.t.ox T —xp -y +y =0, i=1
et byt ' € {0,1}, and
t—1 t i . i _ - _ . - ik— _

v_vhere:ci and:ci' 1;'Jlre varp?blec1 at tl_mest 1 and_t, respec Lk Y(y) = min. Z(’“ & 1)xf st o(k—1). (7)
tively, and bothy,“ andy;" are auxiliary 0-1 variables. For im1

example, assuming;~' = 1 andz! = 0, the above prob- Note that each of these sub-problems is actually the WP-
lem hasd)’t as its optimal value. Obviously, this translation is MaxSAT problem. Furthermore, (4) is trivial because it con-
applied to every combination of, andt. sists of only soft unit clauses on auxiliary variables, but each
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of the other sub-problems consists of hard clausegihand  Termination

soft unit clauses on the variables of tithe We have two ways to detect the fact that the procedure has
On the other hand, theagrangian dual problenis for-  found an optimal solution foP. The first relies on the fol-
mally defined by lowing theorem on the relation between the optimal solutions

for the sub-problems and the optimal solution far
D : max. L(u) s.t. peR,

Theorem 1 If all optimal solutions for the sub-problems

whereL(u) is the optimal value foL, which should vary on . :
. This is obviously an unconstrained maximization problem2™ (4) t0 (7) satisfy all of the constraints (2) that have been
relaxed, then these optimal solutions constitute an optimal

over Lagrange multipliers. The value of the objective func—Solution forP
tion of this Lagrangian dual problem is a lower bound on the '

optimal value ofP. The decomposition of results in the  Thjs is obvious because such optimal solutions provide not
decomposition oD, which produces only a lower bound but also an upper bound on the optimal
value of P. Accordingly, we can terminate the procedure
when the optimal solutions for the sub-problems satisfy all
constraints (2).

The second one is straightforward. When a "forced” feasi-

Our procedure solves this (decomposed) Lagrangian dudle solution foﬂ? hqs the valge qf an quective function that

problem to search for the values of Lagrange multipliers thafdualsLB, this feasible solution is optimal because bbb

give the highest objective, i.e., the highest lower bound on th@ndUB now reach the same value. This fact can also be used
optimal value ofP. This lower bound is useful because it can for terminating the procedure. ,

be exploited in a search algorithm 8. For specific values ~ On the other hand, the procedure can also be terminated
to 41, we can compute a lower bound on the optimal value ofanytime after performing at least one round_. In that case, we
P by simply taking a total sum of the optimal values of the ¢an get the best bounds and the best feasible solution found
sub-problems from (4) to (7). so far.

Outline of Procedure Update Lagrz-;mge Mult!pllers .

) . When an optimal solution foP is not found, we updatg to
Here we describe the outline of our procedure that can profing a tighter lower bound on the optimal value Bf This
vide both lower and upper bounds on the optimal valu®of i olves a search algorithm for the Lagrangian dual problem.
along with a feasible solution fdp. We solve this problem with thsub-gradient ascennethod
Step 1: Set every element ip to 0. [Bertsekas, 1999 Starting from the initial values tp, this

~method systematically produces a sequence of values to La-
Step 2: Solve all of the sub-problems from (4) to (7) using grange multiplier.’-* as follows:

an exact WPMaxSAT solver.

k—1
D : max. L™ (u)+ > L'(p) s.t. peR (8)
t=0

1. Computesub-gradient
Step 3: Compute highest lower bountB, lowest upper

boundUB, and feasible solutioll with the lowest upper G = SETl -z} — yé’t + yi’t,

bound. for eachi andt, which is the LHS of the (2) or the co-
Step 4: If CanTerminate?hen returrLB, UB, andM; other- efficient for 1> in the objective function of, using the

wise update: and go to Step 2. current optimal solutions for the sub-problems.

Starting from Step 1, this procedure repeats Steps 2 through2- Updateu™* for eachi andt as

4 until the termination condition is met. We refer to one iter- it ity DL Gt
ation from Steps 2 to 4 asraund. Next, we focus on Steps 3 H H ’
and 4. whereD, calledstep length, is typically computed by

Lower and Upper Bounding D 7(UB — LB)

As mentioned, we can compute a lower bound on the opti- > (Gh2 7
mal value ofP as a total sum of the optimal values of sub-
problems. We can also provide a feasible solutionoby
forcing some auxiliary variables to flip in their optimal so-
lutions so that they can satisfy each of the constraints (2Yhis rule implies that we increase (decreags®)if its coeffi-
that were relaxed to produce the Lagrangian relaxation prokeientG*? in the objective function of is positive (negative),
lem. Such a feasible solution f@t clearly provides an upper hoping thatL(u), a lower bound on the optimal value &,
bound on the optimal value . Therefore, at each round, increases in the next round.

we can compute both lower and upper bounds on the optimal Although the sub-gradient ascent method is quite simple,
value of P as well as a feasible solution f@*. At Step 3in it does not necessarily converge to an optimal solutiorPfor
the procedure, we keep the best one among those found in tlifthe termination condition is not met after convergence, we
previous rounds. only have a strict lower bound on the true optimal valu@of

in which r is a scalar parameter gradually reduced from
its initial value of 2.
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5 Experiments as DynSAT with decision change costs. More specifically, 30

We compared the performance of the following solvers, eac,iﬂstances for each € {10, 15,...,35} were generated such
of which is based on one of the two solutions: that

e Solvers based on Weighted Partial MaxSAT solving e X is a set of Boolean variables of size 19@;, ..., 100 };

SAT4 an exact WPMaxSAT solver that uses SAT encod-® ¢ returns, for eacht, a satisfiable CNF formula obtained
. ing and a state-of-the-art SAT solver that works from a snapshot of reasonable moves of targets;

better empirically for structured instanciBerre, ® [ a@lways returns the same integeb;’.

201d. As the performance measure, we used quality upper bound
WMAX SATZ: an exact WPMaxSAT solver based on the UB/LB of a feasible solution found by each solver within
branch and bound method that works better empira specified time bound. Note tha®3 is the highest lower
ically for random instancel.i et al., 2007. bound that has been found bylor LDIROTS Needless to
IROTS an incomplete and stochastic WPMaxSAT solversay, this quality upper bound should be closer to one. Each
that enhances iterative local search with the tabuun was made on an Intel Xeon X5460@3.16 GHz with 4
list [Stiitzleet al., 2003. cores and 32 GB memory. The code was basically written
e Solvers based on Lagrandian decomposition in_Java_ and compil_ed with JDK 1.611 on RedHat Enter-
grang P prise Linux 5 (64 bit). 8143 and WMAX SATZ were down-

LD: a Lagrangian decomposition method, where each sulloaded from the authors’ web pages, and their latest ver-
problem is solved by &r4J. A feasible solution is  sions were run with the default settingsraTs was from
identified at every round by forcing some auxiliary the UBCSAT version 1.1 and was run with the -w’ option.
variables to flip in the optimal solutions of the sub- |agrangian decomposition fits parallel processing very well
problems so that they can satisfy each of the relaxethecause, once is fixed to some specific values, the decom-
constraints. posed sub-problems are virtually independent. Therefore, we

LblrROTS a Lagrangian decomposition method, whereexploited the a multi-core processor in our LD-based solvers
each sub-problem is also solved by1®J. Afeasi-  to allow sub-problems to be solved in parallel. Furthermore,
ble solution, on the other hand, is further improvedto make a fair comparison, we also exploited a multi-core
by starting from the one obtained bypland run-  processor in other methods by performing portfolio type par-
ning IROTS for a constant number of flips. This allelization.
further improvement is performed only when the  For the random problem,A$4J, LD, and LDIROTS never
best lower bound is updated. fail to find a feasible solution within a 5-minute time bound.

Given a certain time bound, our goal is to see how tight the//MAX SATZ, on the other hand, sometimes fails and never

obtained bounds are. For time-critical dynamic applications{inds feasible solutions for sequences of size 3MAX SATZ
this property should be crucial for any solvers. When a run idid not work well for these instances because each is actu-

cut off at a certain time bound, WPMaxSAT can provide only&lly @ highly-structured MaxSAT instance being composed
an upper bound, but Lagrangian decomposition can provid@f k random SAT instances sequent_lally conr]ected through
not only an upper bound but also a lower bound. soft clauses.RoTsnever found a feasible solution for aky

We solved the following two problems. The first is Only for the solvers that successfully found feasible solutions

the random problem, where we generated 30 instances #fithin five minutes, we plotted the average quality upper
(k, X, o, f,+,+) for eachk € {10,15, ..., 35} such that ounds in Figure 1(a), where theaxis is sizet of a sequence
R N and they-axis is the average quality upper bound &nd

e X is asetof Boolean variables of size 1Q@i, ..., z100}; | plroTsworked very well in these experiments. In Figure
e ¢ returns, for eacht, a CNF formula randomly se- 1) for 30 sequences of size 35, we also plotted the aver-
lected from the satisfiable instancesus100-430 in 546 quality upper bounds when setting different time bounds

SATLIB; . ) ) over 1, 5, 15, and 30 minutes. This figure clearly shows that,
e [ returns an integer, the cost for changing a v%nable at @yen with increased time boundsp land LbIROTS still out-
certain time, randomly selected frofm, 2, ..., 10°}. performed @743, Other WPMaxSAT solvers, WAX SATZ

The second problem is the target tracking problem, wher@nd IROTS, still fail to find a feasible solution even with a
25 sensor stations arranged on a grid with four sensors ea@®-minute time bound.
must track targets while satisfying the following three con- For the target tracking problem, except forMAX SATZ,
straints: 1) if there is a target in one region, at least two senthe solvers always found feasible solutions within the 5-
sors should turn on; 2) if there is no target in one region, naninute time bound. We plotted the average quality upper
sensor turns on; 3) only one sensor turns on in a sensor stheunds for those solvers in Figure 2(a)bIROTS is com-
tion. Given a snapshot of the targets, this problem can be fopetitive with IROTS with all sizek’s. In Figure 2(b), for 30
mulated as a SAT instance, where for each sensor, a variabéequences of size 35, we also plotted the average quality up-
takes 1 when the sensor is on and 0 when the sensor is offer bounds when setting different time bounds over 1, 5, 15,
Given also a series @f snapshots that is a sample of possibleand 30 minutes. Even with increased time bounds, LD-based
future moves of the targets, the problem can be formulatedolvers remain competitive wittrRbTs. The target tracking
as DynSAT. To minimize the numbers of switching sensorgproblem generally has fewer hard clauses. For such problems,
from on to off and off to on, the problem can be formulateda stochastic solver likeRloTs might work. However, looking
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